

TITLE PAGE

Data Analysis Using MapReduce Programming Model on the Cloud

Final Senior Project Report Submitted to

The Department of Computer Science and Engineering

Faculty of Engineering

Qatar University

In Partial Fulfillment of the Requirements for the Degree of

Bachelors of Engineering in

Computer Engineering

By

Amira Salah Eddine Ghenai (200657271)

Farah AbdulMutaleb El-Qawasmi (200652758)

Nadia Rashid Al-Okka (200653782)

Spring 2010

©Copyright by Amira Ghenai, Farah El-Qawasmi, Nadia Al-Okka, 2010

ii

DEDICATION
This work is dedicated to my parents who has been the wind beneath my wings until I completed

this work. A big thank you to my sister, brother and aunt , words are never enough to express

how much you have done for me. To my brilliant team mates who occupy a special place in my

heart. To all my friends for their patience, humor and advice. To my beloved country ,

university and last but not least, special thanks to all my respected professors.

Amira

This work is dedicated to my parents, brothers, and sister for their continues love , and for

making me the person I am today. To my gorgeous team mates, my best friends in Doha and

Gaza and to all my respected professors for their support and help.

Farah

This work is dedicated to my parents, for their continuous love, patience and support, for my

lovely brothers for their help and support in every step, to my sisters for their love and care, to

my best friend for being always around, to my nice and lovely team mates, to my all special

friends, to all my wonderful professors for their never-ending support and to my great university

for everything that it gave me.

Nadia

iii

DECLARATION

This report has not been submitted for any other degree at this or any other University. It is

solely the work of us except where cited in the text or the Acknowledgements page. It describes

work carried out by us for the project described in the submitted senior Project Proposal which in

available in the appendices of this report. We are aware of the penalties for plagiarism

fabrications and unacknowledged syndication and declare that this report is free of these.

Farah El-Qawasmi signature

Amira Ghenai signature

Nadia Al-Okka signature

Signed on

 June. 10
th

 .2010

iv

ACKNOWLEDGEMENTS

First of all, we would like to thank Almighty GOD for giving us the strength to sustain all the

stress and study pressure during our last senior year. Our sincere gratitude to the supervisor of

this project Prof. Qutaibah Malluhi, for his guidance, help and motivation that helped us through

the course of our journey towards producing this thesis. Apart from the subject of the project, We

learnt a lot from him, which will be surely useful in different stages of our lives.

We wish to extend our heartfelt gratitude to all our Qatar University professors and instructors

and especially to Dr. Sayed ElSayed, Dr. Abdelkarim Erradi, Dr. Ryan Riley and Mr. Zeyad Ali

whose encouragement, guidance and support from the initial to the final level enabled us to

develop an understanding in different aspects of the project.

We take this opportunity to convey our sincere thanks to Dr. Osama Shata, the Senior Project

Coordinator, for guiding us during the two semesters and helping us in submitting the project in

an organized, well presented and professional manner.

We would like also to thank the IT team of Qatar University: Mr. Sajeer Thavot, Mr. Ali Zahid

and Mr. Shuja Ashfaq, for their assistance, criticisms and useful insights in debugging and

solving encountered QU cloud issues.

Furthermore, our deepest appreciation to Mr. Alfredo Cappariello, the cloud computing software

engineer from IBM Innovation Centre in Dublin, for his never-ending technical support

regarding cloud concerns during the whole project.

In addition to that, we would like to thank Qatar National Research Fund (QNRF) for funding

the project
1
.

Lastly, we offer our heartiest regards and thanks to the Carnegie Mellon University staff for their

help and great support and especially to Dr. Majd Sakr, Mr. Brian Gallew, previous system

administrator, and Eng. Suhail Rehman.

We offer our deepest regards and blessings to all of those who supported us in any respect during

the completion of the project.

1
 This publication was made possible by a grant from Qatar National Research Fund under its Undergraduate

Research Experience Program. Its contents are solely the responsibility of the authors and do not necessarily

represent the official views of Qatar National Research Fund.

v

ABSTRACT

Cloud computing is an emerging paradigm of computing where virtualized information

technology resources are dynamically provided as a scalable on-demand service delivered over

Internet technologies. Qatar University (QU) has partnered with IBM, Carnegie Mellon

University in Qatar (CMU-Q), and Texas A&M University at Qatar (TAMUQ) on an initiative

that brings the first could computing system to the Middle East. This initiative leverages the IBM

Blue Cloud solutions to provide a cloud infrastructure (called QLoud) that is open for local

businesses and industries to implement and test relevant applications

In our project, this new computing model was leveraged to solve a real problem that is relevant

to the education and research fields in Qatar. We took advantage of Qatar University cloud and

we focused on analyzing a large data set.

Considering the limited scope of the project, the project focused on designing and implementing

only one useful problem, which is indexing. Data indexing was processed efficiently by

employing the MapReduce programming model on a large virtual cluster provisioned on the

Qatar University cloud infrastructure. MapReduce enables fast distributed processing of results

by employing two steps. The "Map" step divides the gigantic data into smaller chunks and

distributes these chunks over a large number of worker nodes. Each worker node does processing

on its chunk and passes the result to a master node. The master node performs the “Reduce” step

by combining the pieces of results into a final answer. In our case, the MapReduce indexing

MapReduce algorithm produces textual files, which are processed and used in a search

application. A simple user friendly interface is designed to demonstrate this concept.

This project showed the effectiveness of the cloud computing model in improving search

applications using the MapReduce indexing algorithm. In addition to that, MapReduce

programming model has proven to be a powerful, clean abstraction for programmers. For all

those reasons, the cloud technology can be used effectively for further research at QU. However,

our experience in this project has demonstrated that this technology, in its current state, is not as

easy and as seamless as it is advertised.

Furthermore, the project promotes collaboration between Qatar University, CMU-Q, IBM and

other universities in Qatar. It has provided a unique educational experience for us by allowing us

to interact with other institutions, and learn about an emerging leading-edge technology.

vi

TABLE OF CONTENTS

TITLE PAGE .. I

DEDICATION ... II

DECLARATION ... III

ACNOWLEDGEMENT……………………...………………………………………………………….IV

ABSTRACT ... V

TABLE OF CONTENTS ... VI

ABBREVIATIONS ... IX

LIST OF FIGURES .. X

LIST OF TABLES .. XI

CHAPTER 1 :INTRODUCTION ... 1

1.1 INTRODUCTION ... 2
1.2 OVERVIEW .. 2
1.3 PROBLEM STATEMENT ... 3

1.3.1 Critical and Important Aspects of the Problem .. 3
1.3.2 The Targeted Environment .. 5

1.4 GOAL AND MAIN OBJECTIVES ... 5
1.5 SCOPE…………………………………………………………...6

CHAPTER 2: FEASIBILITY STUDY & REVIEW OF RELATED LITERATURE 7

2.1 INTRODUCTION .. 8
2.2 CLOUD COMPUTING .. 8

2.2.1 Cloud Computing Concept .. 8
2.2.2 Cloud Computing History ... 9
2.2.3 Cloud Computing Advantage ... 10
2.2.4 Cloud Types ... 11
2.2.5 High-level Architecture .. 12

2.3 HADOOP ... 13
2.3.1 Hadoop History .. 13
2.3.2 Hadoop Definition ... 14
2.3.3 Why Hadoop is used... 14
2.3.4 HDFS Architecture .. 14

2.4 MAPREDUCE ... 15
2.4.1 MapReduce Overview .. 15
2.4.2 MapReduce Programming Model ... 16
2.4.3 MapReduce Algorithms .. 17
2.4.4 Indexing using MapReduce.. 18

2.5 PREVIOUS WORK ON CLOUD ... 18
2.6 CRAWLER ... 19

2.6.1 Web Crawler Definition .. 19
2.6.2 Why Web Crawlers are Used ... 19
2.6.3 How Web Crawlers Work .. 19
2.6.4 Open Source Web Crawlers ... 19

CHAPTER 3: REQUIREMENT ANALYSIS .. 21

3.1 INTRODUCTION .. 22
3.2 SYSTEM SPECIFICATION ... 22

3.2.1 Functional Requirements .. 22
3.2.2 Non-Functional Requirements .. 23

vii

3.3 HARDWARE AND SOFTWARE RESOURCES .. 23
3.3.1 Hardware Requirements ... 23
3.3.2 Software Requirements ... 25

3.4 THE CONCEPTUAL MODEL .. 26
3.5 PROPOSED SOLUTIONS ... 28

3.5.1 Utilization of Design Related Standards and Recognition of Professional Design Codes . 28
3.6 HARDWARE AND SOFTWARE DESIGN METHODOLOGY .. 29

3.6.1 Hardware Design Methodology .. 29
3.6.2 Software Design Methodology ... 29

3.7 DESIGN GOALS INFLUENCED BY SYSTEM SPECIFICATIONS AND REALISTIC CONSTRAINTS……... 31
3.8 EVALUATION OF THE EFFECT OF DESIGN CHOICES .. 32
3.9 WORK BREAKDOWN STRUCTURE ... 32

3.9.1 Role of Team Members ... 34
3.9.2 Interdependence of Individual Role on the Team Goals ... 34

3.10 PROJECT SCHEDULE .. 34

CHAPTER 4: IMPLEMENTATION AND DEPLOYMENT .. 37

4.1 INTRODUCTION .. 38
4.2 LOGIC FLOWCHARTS ... 39

4.2.1 Generate Data Flowchart ... 39
4.2.2 LineIndexer Class Flowcharts .. 42
4.2.3 Convert Text to Hash Table Flowchart .. 45
4.2.4 Search in a Hash Table Flowchart .. 46
4.2.5 Other Classes ... 47

4.3 COMPLETED INTEGRATED SYSTEM DEPLOYMENT .. 48
4.4 COMPUTER ENVIRONMENT DEPLOYMENT .. 49
4.5 SOFTWARE INSTALLATION AND USAGE ... 49

CHAPTER 5 :TESTING AND EVALUATION ... 50

5.1 INTRODUCTION .. 51
5.2 TEST PLANNING ... 51
5.3 GENERATING DATA TESTING .. 51
5.4 UNIT TESTING .. 52

5.4.1 LineIndexer Code .. 52
5.4.2 SearchHash Code .. 54
5.4.3 System Interface .. 55

5.5 INTEGRATED TESTING ... 57
5.6 SYSTEM TESTING .. 58

5.6.1 Platform Testing.. 58
5.6.2 Performance Testing .. 59

5.7 SYSTEM EVALUATION WITH RESPECT TO ITS IMPACT ON: .. 64
5.7.1 Computing Environment ... 64
5.7.2 Economy and Society ... 65

CHAPTER 6 : CONCLUTIONS AND FARTHER WORK ... 66

6.1 INTRODUCTION …………... 67
6.2 MAIN CONCLUSION ... 67
6.3 CHALLENGES AND ANTICIPATING APPROACH FOR EACH CHALLENGE 67
6.4 STRENGTHS AND WEAKNESS ... 69
6.5 SUGGESTED IMPROVEMENT AND FURTHER WORK ... 69

REFERENCES .. 72

APPENDIX A .. A1

APPENDIX B .. B1

APPENDIX C .. C1

viii

APPENDIX D .. D1

APPENDIX E .. E1

APPENDIX F .. F1

ix

ABBREVIATION

CMU-Q Carnegie Mellon University at Qatar

GFS Google File system

HDFS Hadoop Data File System

IaaS Infrastructure as a Service

OGPS Oil and Gas Production Systems

PaaS Platform as a Service

QNRF Qatar National Research Fund

QP Qatar Petroleum

QU Qatar University

SANs Storage Area Networks

SaaS Software as a Service

SSH Secure Shell

TAMUQ Texas A&M University at Qatar

VPN Virtual Private Network

x

LIST OF FIGURES

Figure 1.1: CPU Frequency with Respect to Time………………………………………… 3

Figure 1.2: CPU Limitations………………………………………………………………. 4

Figure 2.1: Cloud Computing Concept…………………………………………………… 8

Figure 2.2: Virtual Private Network ……………………………………………………… 9

Figure 2.3: Amazon Cloud Explorer ………………………………………………………. 10

Figure 2.4: Cloud Computing Types ……………………………………………………….. 11

Figure 2.5: Cloud Computing Architecture ………………………………………………... 12

Figure 2.6: HDFS Architecture …………………………………………………………….. 15

Figure 2.7: MapReduce ……………………………………………………………………. 16

Figure 2.8: Simple Code of MapReduce …………………………………………..………. 17

Figure 3.1: System Architecture-Three Tier Architecture Style …………………………. 22

Figure 3.2: Blue Cloud 1.6 Network Configuration at QU ………………………………. 24

Figure 3.3: Possible Platforms Available in IBM Blue Cloud 1.6 …………………………. 24

Figure 3.4: System Conceptual Model …………………………………………………….. 27

Figure 3.5: MapReduce Phase Conceptual Model …………………………………………. 28

Figure 4.1: Generate- Part 1 Flowchart .……………………………………………………. 39

Figure 4.2: Generate- Part 2 Flowchart …………………….………………………………. 40

Figure 4.3: Mapper Flowchart ……………………………………………………………... 42

Figure 4.4: Reducer Flowchart ……………………………………………………………... 43

Figure 4.5: Convert Text To Hash Table Flowchart ……………………………………….. 45

Figure 4.6: Search in a Hash Table Flowchart ……………………………………………... 47

Figure 4.7: Completed Integrated System ………………………………………………….. 48

Figure 5.1: Test Planning ………………………………………………………………….. 51

Figure 5.2: State Chart Diagram for File Generation ……………………………………. 52

Figure 5.3: Equivalent flow graph for the Map implementation …………………………... 53

Figure 5.4: State Chart Diagram for wordSearch Function ………………………………. 55

Figure 5.5: Sample of Screen Shot Interface ………………………………………………. 56

Figure 5.6: Sample of the interface that shows not case sensitive input ………………….. 56

Figure 5.7: Output for Unavailable Word in the Files ……………………………………... 57

Figure 5.8: Bottom-up test strategy ……………………………………………………….. 58

Figure 5.9: State of Nodes in the Cloud …………………………………………………… 59

Figure 5.10: Snapshot of the Console for Running a MapReduce Job(1GB- 5 Reducers) … 62

Figure 5.11: Reducer Task vs. Time when data input is 1GB……………………………. 63

Figure 5.12: Reducer Task vs. Time when data input is 5GB…………….………………. 63

Figure 5.13: Reducer Task vs. Time when data input is 25GB…………………………… 64

Figure 6.1: The error message in the QU cloud interface ………………………………….. 71

xi

LIST OF TABLES

Table 3.1: Gantt Chart Activity …………………………………………………………. 34

Table 5. 1: Test Cases and Their Corresponding Path for the Map Activity Diagram…… 53

Table 5. 2: Testing Environment for Experiment 1.1 ……………………………………. 60

Table 5. 3: Testing Environment for Experiment 2.1 ……………………………………. 60

Table 5. 4: Testing Environment for Experiment 2.2 ……………………………………. 61

Table 5. 5: Testing Environment for Experiment 2.3 ……………………………………. 61

Table 5. 6: Relation between Number of Files and Size of Each Size …………………… 61

Table 5. 7: Testing Environment for Experiment 2.4 ……………………………………. 62

CHAPTER 1

INTRODUCTION

2

1.1 Introduction

This chapter is considered as an introduction to the whole project report. In this

section, we discuss the project overview and the fields investigated in the project.

Then, the detailed problem statement is elaborated on by focusing on the most

important aspects of the problem and how it is interpreted and solved. Also the project

targeted environment is explained and the scope of study is described.

1.2 Overview

If we look deeply around us, we will quickly notice that we are living is a

“data age”. The International Data Corporation IDC estimated the total universe

storage to be 0.18 zettabytes in 2006 which let us think of how we are going to

manage this huge amount of data and how are we going to process it. This problem

will affect both individuals and organizations. To solve this issue, combining multiple

hardware units has been proposed. However, two major points needed to be in

consideration: first is to solve the hardware multiple points of failure and second is to

combine the distributed tasks for processing the data. [1]

The above described issue was the main concern in our project. We elaborated

the situation by a combination of different technologies from various fields:

First, the cloud computing concept is motivated by data demands. The infrastructure

of cloud computing can automatically scale up to meet the requests of users by its

virtualization and distributed system technology. In addition to that, it can provide

redundancy and backup features to solve the hardware failure problem. For that, the

cloud computing field is strongly involved in our project. The Qatar University Blue

Cloud is employed to store the project large datasets (0.5 Terabyte is available to be

used for the project purposes).

Second, the cloud is used as a proper distributed system platform to apply a

parallel programming model which is utilized in our project; that is the “MapReduce”

programming model. The MapReduce programming model is a model that solves the

task distribution problem by the computation of the map and reduce methods and the

in-between interface. [1]. In addition to that, MapReduce makes it easier for

programmers to develop parallel processing algorithms and reduces the programming

efforts. In our project a specific MapReduce algorithm is used, which is indexing.

Indexing is a common operation performed in web search engines for three main

purposes: HTML parsing, morphological and language normalized analysis and large-

scale indexing. In our project, this concept in used to build an index from a large set

of documents. Using the MapReduce-generate index makes it much faster to locate an

item in a list of documents. For that purpose, another algorithm is appended and

applied on the indexed file which is searching. The searching algorithm enables the

user to search within the index file for a specific word.

The MapReduce model is implemented in the cloud using the Hadoop

implementation developed by Apache. Hadoop includes a distributed file system,

HDFS and a system for provisioning virtual Hadoop clusters over a large physical

cluster called Hadoop On Demand (HOD). [2]. Implementing the MapReduce model

3

on Hadoop enables one to exploit the massive parallelism provided by the cloud and

provides a simple interface to a very complex and distributed computing

infrastructure.[3].

The proposed project will demonstrate the effectiveness of the cloud

computing model in dealing with large scale data. Our initial plan was serving the oil

and gas industry by analyzing historical databases generated by Oil and Gas

Production Systems. The alternative plan, after the first plan failed, was analyzing

data generate through web crawling. Web crawling is following link pages collected

already to pages that have not been collected yet and getting their files. Good open-

source web crawlers are available and can be used to meet the needs of the project.

The one used in our project to collect data is crawler4j. Although crawler4j was a fast

web crawler, the network connection was not fast enough to meet the project time

constraints and requirements (half terabyte was planned to be gathered). Finally, to

get the project data, file/data generation code was designed and applied.

1.3 Problem Statement

1.3.1 Critical and Important Aspects of the Problem

Dealing with large sets of data was and still is a huge concern that developers

and programmers need to pay attention to, to succeed in producing flourishing

projects. A huge list of considerations should be in mind to process large datasets in a

minimum amount of time and within a specific budget, which is a real challenge!

Processing data within a specific time and budget is very critical for lots of

applications: in scientific and engineering problems (geology, physics, molecular

science…) , commercial applications (datamining, network video and multi-national

corporations…) and user applications (image and video editing, games, 3D-

animations…) [4]. The limitations for such demanding applications is seen from two

different perspectives: hardware and software. First in hardware, processors hit a

frequency wall of 4GHz in the 2000’s (Figure 1.1) because of terminal Silicon limit

(Figure 1.2).

Figure 1.1: CPU Frequency with Respect to Time[4]

4

Figure 1. 2:CPU Limitations [4]

Second, the sequential programming model that executes instruction after the

other is not a good solution in case of large scale data given the time limitation

constraint.

In our project, we examine this problem and investigate one of the solutions

which was a combination of various technologies that, at the end, solve the large

dataset processing problem.

To overcome the hardware limits, a distributed system is used which is, in our

case, provided through the cloud computing system: this way, we can enhance the

performance through load distributing on multiple virtual machines and by this way

we will eliminate the one physical processor limitations. In addition to that, we will

gain additional features provided by the cloud system; backup, no single point of

failure, add computing power on existing infrastructure, share applications over

multiple machines, etc.[5].

Moving to the software side: the major key for improving the programming

model is using the MapReduce functional programming model. The main goal of

designing this specific model is to process large amounts of data using thousands of

processors which would perfectly mach to our hardware design as we are using a

distributed system “the cloud”. In addition, MapReduce would provide fault-

tolerance, status and monitoring tools and clean abstraction for programmers. Even

though Google was the one to develop the MapReduce model for processing web

data, its implementation is proprietary. For that reason, The Apache project “Hadoop”

is commonly used as an alternative in, for example, Facebook, Yahoo and also in our

project [6].

5

In our study, we focus on providing an indexing application (as an example of

MapReduce algorithm) for a user to search for a specific word from the indexed

document that was produced by running a MapReduce program on the cloud for a

large set of data. This data is located in the Hadoop distributed file system provided

by the Hadoop system installed in the cloud. . [7].

In our study, we focus on providing an indexing application (as an example of

MapReduce algorithm) for the client to search for a specific word from the indexed

document that was produced by running a MapReduce program on the cloud for a

large set of data. This data is located in the Hadoop distributed file system provided

by the Hadoop system installed in the cloud.

1.3.2 The Targeted Environment

The project was first designed to develop and evaluate new techniques for

applying pattern recognition and data mining algorithms on historical databases

generated by Oil and Gas Production Systems (OGPS) to answer useful queries about

trends and patterns of gas reservoirs and oil fields. This plan could not be achieved

successfully due to the confidential nature of the target OGPS data.

The second plan was dealing with large set of text data and applying a

MapReduce algorithm to generate and index of this data using cloud computing. With

the new plan, the targeted environment of the project is conceived as a simple

searching process supported by the indexing algorithm, which consists of a set of

innovative and advanced tools and services (MapReduce, Cloud Computing,

Hadoop…). Here, a user is presented with a simple interface in the form of search

window: interacting with it results into finding out the files were the word most

frequently occurs in a short period.

1.4 Goal and Main Objectives

 The project goals can be summarized in six main points:

1. Understand the cloud computing technology and its environment, structure,

platforms, applications and services.

2. Explore the MapReduce model, to be able to understand how the map and

reduce functions are implemented.

3. Merge the knowledge about the cloud computing, MapReduce program model

and Hadoop platform. This is considered a major project goal, since it allows

applying data analysis techniques using MapReduce model on the cloud.

4. Investigate one of the most important applications of MapReduce model

which is indexing. In addition to that, the project aims at designing the needed

data structures, so optimal conditions are reached.

5. Apply the designed indexing algorithm over an intensive input dataset.

6. Design a search application with a friendly user interface. In this interface a

user can enter a certain word to be searched, and it will return back a list of

names of files where the word has highest occurrence. Considering that the

result will be delivered using the generated index.

6

1.5 Scope

The original project scope was directed towards efficiently analyzing

historical data repositories of oil and gas production systems using cloud computing.

Data was planned to be offered from Qatar Petroleum (QP) to develop and evaluate

new techniques for applying pattern recognition and data mining algorithms on

historical databases generated by Oil and Gas Production Systems (OGPS) to answer

useful queries about trends and patterns of gas reservoirs and oil fields.

However, this plan was not achieved successfully as it was not possible to get

this confidential QP data within the timeframe of this project. Therefore, the project

was redirected to a new scope that focuses on applying a MapReduce algorithm using

cloud computing technique on Web-scale data. To be more specific, apply indexing

and use MapReduce on a large set of data generated using a simple java code and

perform a search operation on the indexed documents to let the user search for a

specific word.

7

CHAPTER 2

 FEASIBILITY STUDY & REVIEW OF RELATED LITERATURE

8

2.1 Introduction

The objective of this chapter is to give an overview about the main components of

our project and to give an idea about the relation between our project and previous

projects done in the same field. A literature review of the main components are

discussed from different aspects such as history, structure, hardware, software,

platforms and other related points needed to be clarified to understand the idea and the

work flow of the project. The following sections in this chapter are going to discuss

these main points.

2.2 Cloud Computing

2.2.1 Cloud Computing Concept

Cloud computing is an emerging Internet cloud based development with central

remote servers to maintain data and applications. In other words, it is a style of

computing in which dynamically scalable and often virtualized resources are provided

as a service over the Internet[7] (Figure 2.1). The resources may represent storage

area networks (SANs), network equipment, firewall and other security devices. Cloud

applications use large data centers and powerful servers that host Web applications

and Web services. Anyone with a suitable Internet connection and a standard browser

can access a cloud application.

Large corporation executives get benefit of cloud computing because it makes

their life much more easier: instead of taking care of a large amount of computer

devices and installing all the needed applications suite and licensed software, a better

alternative is to install one application into all client end-devices which will link them

to web-services where they can find all needed programs [8].

Figure 2.1: Cloud Computing Concept[8]

Cloud computing is a concept used in e-mail applications like Hotmail, Yahoo!

Mail or Gmail: you log in to a Web e-mail account remotely. The software and

http://en.wikipedia.org/wiki/Internet
http://computer.howstuffworks.com/web-30.htm

9

storage for your account doesn't exist on your computer, it's on the service's computer

cloud [8]

2.2.2 Cloud Computing History

The Cloud is a term borrowed from telephony field in the 1990s. Telephone

companies where able to change wired fixed circuits which represented virtual private

network (VPN) with virtual private network (cloud) keeping the same bandwidth

which results in utilizing there bandwidth more efficiently (Figure 2.2)

Figure 2.2: Virtual Private Network[9]

In 1999, Marc Andreessen was one of the first to attempt to commercialize cloud

computing with an Infrastructure as a Service model. Then in 2000, Microsoft

extended the concept of SaaS through the development of web services.Next in 2001,

IBM detailed these concepts: it described advanced automation techniques such as

self-monitoring, self-healing, self-configuring, and self-optimizing in the management

of complex IT systems.

After that; in 2005, Amazon used cloud in its infrastructure which resulted in new

features faster and easier and as a result, the concept of cloud computing was getting

developed (Figure 2.3)

http://en.wikipedia.org/wiki/Telephony

10

Figure 2.3: Amazon Cloud Explorer[10]

In 2007, Google, IBM, and a number of universities embarked on a large scale

cloud computing research projects [7]

2.2.3 Cloud Computing Advantage

The unique cloud architecture could give the cloud a large number of unique

benefits that other technologies could not possess. One of its advantages is that clients

could access their data anytime, anywhere if only having net access. Data is not

resided in the user's device or even an internal network which makes it much easier

for the user.

Switching to the financial point of view, cloud computing brings hardware cost

lower and saves IT support expenses: instead of having expensive large hardware

requirements of each client including large memory and fast CPUs, a cheap terminal

with a keyboard and a mouse would be sufficient to perform the same tasks using the

cloud computing system. In addition to that, streamlined hardware would have fewer

problems than a network of heterogeneous machines and operating systems and by

this way, IT team do not have to worry about software issues as updates and will be

free to concentrate more on innovation. Cloud computing will also provide faster time

to market: companies will have the ability to deploy and scale apps in hours without

changing the code ultimately which enables them to begin making a profit sooner.

11

Usually, servers and digital storage devices take huge space from the company

residence which is considered a real trouble for small companies but with cloud

computing, no more worries about the location. Cloud computing is letting the

company decide of either locate the storage devices in its location or rent someone

else's hardware and by this way, location problem is solved![8]

On the other hand, scientists and researchers work with calculations so complex

that it would take years for individual computers to complete them. On cloud

computing system, the client could send the calculation to the cloud for processing.

The cloud system would tap into the processing power of all available computers on

the back end, significantly speeding up the calculation which will result the output in

much less time with additional services that include more security, redundancy and

bandwidth.

2.2.4 Cloud Types

We have different ways of categorizing the cloud concept. One reasonable way is

to divide it into public, private and hybrid cloud (Figure 2.5):

Figure 2.4: Cloud Computing Types[7]

Public cloud: (external cloud) It's the most traditional cloud environment that is

located outside the company' boundaries. This service is offered as a 3rd party vendor

and is provisioned on the Internet using web applications services (eg. Amazon EC2,

Sun OCP, Google AppEngine).

Private cloud: (internal cloud) A cloud environment which creates a pool of

resources within a company's firewall and includes resource management and

dynamic allocation, chargeback and support for virtualization.

Hybrid cloud: (mixed cloud) A mixture of both private and public cloud. It is an

environment in which external services are leveraged to extend or supplement the

12

internal cloud. For instance, one of the virtualization environments which require

servers is firewalls and spam filters. [8], [11]

2.2.5 High-level Architecture

The new cloud computing technique evaluated in 2009 [7] provides its unique

services, delivered through data centers, relying on its architecture. The high

virtualization technology architecture is mainly composed of three traditional layers

from the hardware till the applications (Figure 2.4). The cloud layers are represented

as follows: the infrastructure layer, the platform layer and the application layer.

Figure 2.5: Cloud Computing Architecture[7]

2.2.5.1 Infrastructure layer (IaaS)

 Starting with the infrastructure layer, it is considered as a platform

virtualization environment and it delivers infrastructure as a service (IaaS). The IaaS

service, in addition to the ability to scale, reduces the costs because you only need to

pay for what you use: rather than purchasing servers, software, data center space or

network equipment, clients instead buy those resources as a fully outsourced service

in the cloud[12] .IaaS is divided into three main categories:

The first category is the compute category which consists of physical

machines and virtual machines such as Amazon EC2, GoGrid and the OS-level

virtualization [7]

The second category is the network category which provides network services

that may be firewall or load balancing techniques. One of the network service

examples provided by the network category is offering a private virtual network

where customers can access the cloud over the network internet protocol security

[13].

The third category is the storage category which identifies the amount of

storage available and can be manipulated and managed by the clients.

http://en.wikipedia.org/wiki/Data_center

13

2.2.5.2 Platform Layer (PaaS)

Moving now to the platform layer which is considered as the primary key for

consuming the cloud infrastructure to support cloud applications [7]. The platform

layer offers platform as a service (PaaS) which allows clients to run their own

applications on the provided infrastructure delivered via Internet from the provider's

servers. PaaS service offers workflow which helps in applications design, develop,

and test stages. It is also beneficial in application services such as database

integration, state management, team collaboration and much more [14]. We can

divide the PaaS in two different perspectives: the PaaS producer and the PaaS

consumer. First, the PaaS producer deals with integrating the OS, application software

and service environment provided to the client. Second, the PaaS consumer how

interacts with the offered services using API or GUI components [7].

2.2.5.3 Application Layer (SaaS)

Finally, the application layer that delivers software as a service is considered

as a multitenant architecture model where a client can browse a single application

provided by the cloud owner. The provider takes full responsibility of the application

for the client on demand so the client does not need to alleviate the burden of software

maintenance, ongoing operation, and support [7], [14]. Example of SaaS well known

applications are: YouTube (web application) and DropBox (for storage purposes) [7]

2.3 Hadoop

2.3.1 Hadoop History

In 2000, Hadoop was created by Doug Cutting, who named it after his child's

stuffed elephant. It was used as an open source to support distribution for the Nutch

web search engine project which is a part of the Lucene Apache project.. Although he

made a great amount of improvement , after indexing a few hundred million web

pages, he realized he was a long way off from indexing the quickly growing billions

of web pages on the internet.

In December 2004, Google File system (GFS) and MapReduce papers were

published by Google Labs, which allows very huge amount of computations to be

trivially parallelized across large clusters of servers. Cutting used that information

from the paper and added the GFS and MapReduce implementation to Nutch using

twenty nodes to run on.

In years 2006-2007, Cutting got a position in Yahoo company after seeing the

Hadoop code, then a team of engineers worked on the software so tens of thousands

of computers could be used to run them simultaneously, and researchers used that

software as data mining tool.

As any new good developed program, word spread about it and by the

beginning of year 2008, Amazon, Intel and Facebook were using Hadoop for many

issues like log analysis and other things. Even Google got involves, initiating a

project with IBM to offer major universities with clusters of some hundred computers

so students could improve their techniques for parallel programming.[15]

14

2.3.2 Hadoop Definition

Hadoop is a Java software framework for running distributed applications on

large clusters of commodity hardware. In the process application is divided into a

number of small chunks of work because Hadoop implements a computational model

called MapReduce, and each of the fragments may be executed or re-executed on any

node in the cluster. In addition, Hadoop has its own distributed file system (HDFS)

which stores data on the compute nodes and replicates data to multiple nodes to

ensure if failure happened for data in a node, there are at least two other nodes from

which to recover that piece of information. [11]

2.3.3 Why Hadoop is used

Having a huge unstructured data that comes from many sources and takes

many types such as web logs, text files, sensor readings, text messages, audio, video

and more. Dealing with this data needs many things as huge storage, reliability, tools

to deal and analyze this data and supervise any failure could be occurred .All of these

requires can be managed by the inexpensive Hadoop open source framework which is

used on cross-platform operating system[16]

2.3.4 HDFS Architecture

HDFS has a master/slave architecture as presented in (Figure 2.6). An HDFS

cluster contains only one NameNode that is a master server controls the file system

namespace and regulate access to files by clients. Moreover, there are some

DataNodes, usually divided one per node in the cluster. These DataNodes organize

the storage space related to the nodes that they run on. HDFS represents a file system

namespace and allows user data to be stored in files. Internally, a file is divided into

one or more blocks which are stored in a set of DataNodes. The NameNode settles on

the mapping of blocks to DataNodes , and executes file system namespace operations

such as opening and closing files and directories. The DataNodes read and write

requests from the file system’s clients, also perform block creation, deletion, and

replication after getting the instruction from the NameNode.

15

Figure 2.6: HDFS Architecture[17]

HDFS is built using the Java language. As a result of that, any machine that

supports Java can run the NameNode or DataNode software. Whenever highly

portable Java language is used ,then HDFS can be arranged on a wide range of

machines. A usual deployment has a certain machine to run only the NameNode

software, while other each machine in the cluster runs one instance of the DataNode

software. The architecture does not prevent running multiple DataNodes on the same

machine but it is unusual to run like this case. Having only one NameNode in a

cluster simplifies the architecture of the system very much. The NameNode is the

arbitrator and repository for all HDFS metadata, and all the system is designed so user

data never flows through the NameNode[17]

2.4 MapReduce

2.4.1 MapReduce Overview

In the beginning of the twenty first century, many computations that are

specialized to process large amounts of raw data as crawled documents, web request

logs, etc… These computations were applied by authors and many others at Google.

They computed different types of derived data, like inverted indices, summaries of the

number of pages per host, various representations of the graph structure of web

documents. The input data was usually large in the computations, so it has to be

distributed among hundreds or thousands of machines to finish the process in a

reasonable time. Although the computations were straightforward, the matters of how

to parallelize the computation, distribute the data, and deal with the expected failures,

made the original simple computation to be very complex specially with the huge

amount of code to handle these issues.

As a result to this complexity a new model was designed to allow expression

of the simple computation with hiding the complex details of data distribution,

16

parallelization and fault-tolerance in a library. This model is inspired by the map and

reduce primitive in Lisp which is the oldest high-level programming language. The

use of this functional abstraction with user specified map and reduce operations

enables automatic parallelization and distribution of huge computations, and achieves

high performance on large clusters of PCs.[15]

2.4.2 MapReduce Programming Model

MapReduce is a programming model and a linked implementation for dealing

out with many terabytes of data on thousands of machines. Computation obtains a set

of input key/value pairs, and generates a set of output key/value pairs, so the user of

the MapReduce library states the computation as two functions: Map and Reduce.

 In the map reduce function the user gets the data from data sources like lines

out of files, rows of a database, etc)and feeds them to the function as an input

key/value pair (e.g.: filename, line). Then it generate a set of intermediate key/value

pairs as shown in Figure 2.7. After that the library combined together these

intermediate values related with the same intermediate key, and pass them to the

Reduce method which accepts an intermediate key I and a set of values for that key

and tries to merges together these values to form a possibly smaller set of values.

From practice user can visualize that usually only zero or one final value will be

produced per key as presented in (Figure 2.7)

Figure 2.7: MapReduce[18]

Important thing which should be noticed that all the map() functions work in

parallel to create different intermediate values from different input data sets, and the

same for the reduce() functions which run in parallel so each one work on different

output key.

17

Here is a simple example that could explain the functionality of MapReduce

Model. In this problem the number of occurrences of each word will be accounted

from a large collection of documents.

The map function emits each word and an related count of occurrences just

like 1 in the simple pseudo-code shown in (Figure 2.8) .On the other hand the reduce

function sums together all counts emitted for a certain word. In addition, another code

is used by the user to fill in a MapReduce specification object with the names of the

input and output files, the user then invokes the MapReduce function, passing it the

specification object.

Figure 2.8: Simple Code of MapReduce[19]

 As said before when MapReduce process is used, the data must be distributed

among the different nodes, so the master program divvies up tasks depending on

location of data where it tries to have map() tasks on same node as physical file data,

or at least same rack.

 Another thing that MapReduce module deals with the expected failures, where the

master detects worker failures in the re-executes completed, in-progress map() tasks,

and re-executes in-progress reduce() tasks. In addition, master notices particular input

key/values that cause crashes in map(), and skips those values on re-execution.[19]

2.4.3 MapReduce Algorithms

There are many problems that can be mapped to a MapReduce program, such

as: sorting, searching, indexing and classification. These programs must fit the

features of the MapReduce algorithm. For any MapReduce algorithm, processing

data must go through a map phase and a reduce phase. With consideration that the

output of the map phase is the input to the reduce phase. [20]

18

2.4.4 Indexing using MapReduce

Indexing is the process of classifying and arranging a collection of data in

such way to make it retrieved easily.[21]

Using the MapReduce programming model, usually, inverted indexing

algorithms is used. Inverted indexing is referred to an index data structure that maps

from content, a key, may be word, number or phrase, to a location in specific storage

space.[22]

For map function, pairs of (file_name, content) are used as the input. Each

word is emitted with the file name, so the output of this map function is pairs of

(key_word, file_name). on the other hand, the reduce function takes(key_word,

file_name) pairs as an input. Then, for each certain key(word), the reduce function

make a list of files that this word is in. Finally, the output of this function is a pair of

(key_word, List_of_files) [20]

2.5 Previous Work on Cloud

Amazon Elastic MapReduce: This is considered as a web service application

which can be implemented in various fields such as business, research, and data

analysis to process huge amount of data easily and cost effectively. Hadoop platform

is used as a framework and is running on the web scale infrastructure of the Amazon

cloud in which the infrastructure layer is composed of the Amazon EC2 virtual

machines [23] and the platform layer consists of Amazon S3 which represents the

simple storage service[24].

With Amazon Elastic MapReduce, one can perform data intensive tasks

whatever the data size is to achieve a wide variety of applications such as web

indexing, data mining, machine learning, log file analysis, financial analysis,

bioinformatics research and scientific simulation. The benefit of choosing the Hadoop

platform and implementing MapReduce Model on the Amazon cloud is: letting one

interact with crunching or analyzing the data without worrying about time,

management of Hadoop clusters, and cloud infrastructure which is provided by the

virtualization technique.[23]

There are lots of similarities between the Amazon Elastic MapReduce

application and the designed system in this project. First, the same main goal is

targeted which is data analysis using MapReduce programming model on the cloud.

Another point is the service type which is platform as a server PaaS: Amazon Elastic

MapReduce uses Amazon S3 and the project's Paas is BD2 Server. They both use the

infrastructure as a server IaaS also: Amazon Elastic MapReduce uses EC2 while the

project's IassS is VMWare (XEN).

Even though both projects are very similar; there is one obvious dissimilarity

that is the application query: in the Amazon Elastic MapReduce, we have more than

one query (indexing, sorting…). However, the project uses one unique query which is

indexing.

19

2.6 Crawler

2.6.1 Web Crawler Definition

A web crawler is a simple program that crawl to wide world web in a

systematically way. It automatically passes through the Web. It is also called spider,

robot, or wanderers. [25][26][27]

2.6.2 Why Web Crawlers are Used

Web crawlers or web spiders are used for many purposes. Mainly, they are

used by the search engines to provide up-to-date information about the web pages, so

they can process this data for faster search. Many other things can be accomplished by

using web crawlers such:

1. Web site maintenance: they can be used to check the validation of the links

related to this site. [25]

2. Gathering data: they can be programmed to download pages from the web.

These pages can also be with some specifications. [25]

3. Searching for copyrights: for some companies, they can use crawlers to search

for copyrights violations or infringements. [27]

4. Performing textual analysis: crawlers can be programmed in such a way to

help in textual analysis such finding the most common words on the web, etc.

[28]

2.6.3 How Web Crawlers Work

A crawler starts with the seeds, which are the URLs to visit. When the crawler

visits a URL, it lists all the hyperlinks in the page and adds them to the crawl frontier,

which is a list of URLs to visit. URLs from the frontier are recursively visited

according to a set of policies. [25]

2.6.4 Open Source Web Crawlers

There are many open source web crawlers, each has its features. Such as the

language used in programming, number of machines used to run, and data type

needed to crawled. Choosing a crawler is depending on the purpose of using it. Some

of the open source crawlers are:

1. Heritrix: It is an extensible, web-scale and distributed internet archive’s crawler.

This crawler is designed for archiving periodic snapshots of a large portion of the

Web. It was written in Java.[28]

2. Nutch: It is an Apache’s Open Source Search Engine. It is distributed and tested

with 100M pages. This crawler is written in Java and released under an Apache

License. It can be used in conjunction with the Lucene text-indexing package. [29]

3. WebSphinx: Originally, it is developed by Carnegie Mellon University. Now it is

a web crawler Java class library. It can work on a single machine. This crawler

has lots of problems and it is reported to be very slow. [29][30]

http://en.wikipedia.org/wiki/Lucene

20

4. Crawler4j: is a fast crawler written in Java and released under an Apache License.

It can be configured in a few minutes and is suitable for educational purpose. It

can work on a single machine and it should easily scale to 20M pages. The best

advantage is that it is very fast; it can crawl and process the whole English

Wikipedia in 10 hours. [29]

21

CHAPTER 3

REQUIREMENT ANALYSIS

22

3.1 Introduction

The goal of this chapter is to demonstrate the analysis and design of the

system. You can find the system specification, hardware and software requirements.

Moreover, system conceptual model, proposed solutions are explored. In addition to

that, this chapter shows a full description of the methodology of hardware and

software design. Also Design goals influenced by system specification, realistic

constraints and evaluation of the effect of design choices are investigated. At the end

of this chapter, work break down structure, and project schedule are illustrated.

3.2 System Specification

Referring to the architecture of the designed system shown in Figure 3.1, there

are three main layers which are: storage layer presented by HDFS in the cloud, system

applications layer which consists of indexing huge sets of data, saving the result of

indexed data into hashtable, and serializing the hashtable and search in it. Finally the

interface layer which shows the search interface designed in this project. To be able to

implement this system, some functional and nonfunctional requirements are desired to

be specified.

Figure3.1: System Architecture-Three Tier Architecture Style

3.2.1 Functional Requirements

The functional requirements illustrate the relation between the system and its

environment independent of its implementation [31]. In this system, the environment

consists of hardware and software resources and environment like the cloud, HDFS,

Indexing using MapReduce, the inputted data itself, also the user of the system, and

its applications. One of the system functional requirements is index a huge sets of

23

data (0.5 TB) using the MapReduce algorithm. This data must be inputted as *.txt

files to suit the Indexing algorithm. In addition to that, from the functional

requirement is to convert the *.txt indexed output file into hashtable and serialize it.

Exploring the system from the user side, he/she can input a word that he/she

looking for through the user interface, if the word exists in the indexed *.ser file

(serialized object saved in a file) then the system outputs a result as a list of ten files

where the word has highest occurrence. On the other hands, if the word doesn’t exist,

a message shown to the user as “This word doesn’t exist”. All those functional

requirements are mapped together to produce a system that can analyze the processing

of large scale intense data on the cloud using MapReduce programming model.

3.2.2 Non-Functional Requirements

The non-functional requirements express features of the system that are not

directly related to the system functional behavior. Regarding the system described in

this paper, there are many different requirements that fit in this field. One of them is

usability. The user can address usability issues using the friendly user interface where

he/she can use it without login or registration. Moreover to ease the dealing with the

system, a “read me” file is given in the system, so the user can follow the guidelines

to do his/her search. Looking to the system from performance perspective, the system

should handle 0.5 TB, and the performance should be improved using MapReduce

algorithm on the cloud that provides parallelism.

3.3 Hardware and Software Resources

3.3.1 Hardware Requirements

3.3.1.1 IBM blue Cloud 1.6

One of the most important hardware requirements for this project is: first, IBM

blue cloud 1.6 which provides flexibility and scalability. Also it increases the ability

for customizing hardware and software in a simple way and reducing the cost,

installation and maintenance operations. The project takes advantage of the cloud

infrastructure available at Qatar University (QU) and Carnegie Mellon University in

Qatar (CMU-Q). The used cloud has some specifications :

1. Physical machines which are HS22 14 blades

2. A number of Virtual machines (at least 6 VMWares)

3. OS-level virtualization is Xen RedHat Linux 5.2

4. The IBM blue cloud in QU offers a private and separate network and

composed of VLANs of range from 10.160.0.0 to 10.160.255.255 and the

host range is 10.160.255.0 to 10.160.255.255. The network configuration

is well demonstrated in Figure3.2

24

Figure 3.2: Blue Cloud 1.6 Network Configuration at QU[32]

5. Blue Cloud 1.6 at Qatar University supports the repository architectural

style with at least 2 CPUs ,2.6 GB of RAM and 250 GB disk space and is

designed to store persistent data on DB2 relational database management

system. To implement those previously described features, DS3400

Storage for IBM is engaged [32].

6. Looking to the PaaS perspective of the Blue Cloud 1.6 at Qatar University

(see section 2.2.5.2), we may find a wide range of platforms including:

WebSphere Application server, BD2 Server, IBM Java SDK 6 and Hadoop

0.16.4 or Hadoop 0.20.1 (Figure 3.3) [32].

Figure 3.3: Possible Platforms Available in IBM Blue Cloud 1.6

25

3.3.1.2 External Disk Drive

Second, external disk drives that can hold up to 250 GB - 1 TB of data. This

external storage is needed to hold and move the data to cloud storage infrastructure.

3.3.2 Software Requirements

There are many software requirements related to the cloud which are:

3.3.2.1 Java Language

Java is a programming language which was designed for general purposes. It

has many characteristics which make it appropriate to use in the designed system.

Java programming language was created with specific goals and benefits. One of

them is that the java is designed to be simple, familiar, and object-oriented language

so it can be used to develop applications. Another thing that it should be robust and

secure and executes with high performance. In addition to that, java is platform

independent, and using a java virtual machine, java programs can be run on any

platform. Moreover, Java has automatic memory management using the garbage

collection in the object lifecycle. Using java syntax assisted in building our codes to

apply the whole system, also Java libraries like SWING library help in creating the

user interface in this system .[33]

3.3.2.2 Java Virtual Machine

In this project, Java Development Kit (SunJDK 1.6.0_06) or Java Runtime

Environment(JRE 1.6)virtual machines can be used and set in JAVA_HOME in the

variable environment. These virtual machines are Java software development

environment which contains everything that a user needs to create a java program, for

example it contains compiler, debugger, .jar Packages and other tools for developing

applications. [33]

3.3.2.3 Hadoop Platform

Hadoop is a Java software powerful framework for applying automatic

parallelization on many computing distributed applications on huge number of nodes

in a commodity hardware. Hadoop implements MapReduce computational model, so

the application is divided into a number of small chunks of work. In addition, Hadoop

has its own distributed file system (HDFS) which stores data on the compute nodes

and replicates data to multiple nodes to ensure if failure happened for data in a node,

there are at least two other nodes from which to recover that piece of information.

[11] .In this project, Hadoop version 0.20.1 is used ,it was the considered version

choice after testing for many other versions which had many problems and bugs, like

Hadoop 0.16.4,Hadoop 0.18.3, Hadoop 0.19.1.,Hadoop 0.20.0,

3.3.2.4 Eclipse

Eclipse is a Java environment which is available for windows and Linux

platforms. In the applied system, it is used for windows. Using this environment let

the user run his java codes easily. There are many versions of Eclipse, and Eclipse 3.2

26

EUROPA is the used version in this project because it suits the used version of

Hadoop 0.20.1.

3.3.2.5 MapReduce Plugins

Those plugins are added to the ones of the Eclipse, and are required to allow

running MapReduce programs on Eclipse, also to permit the interaction between

Hadoop Distributed File System on the cloud and Eclipse, where MapReduce

locations can be created, and MapReduce projects can be used.

3.3.2.6 Cygwin

Cygwin is a Linux like environment that allows Unix or Linux applications to

be compiled and run on a Windows Operating system. It is used in this project to help

in installation of Hadoop 0.20.1 because it can run the scripts supplied with Hadoop

which are written for the Unix platform only. [35]

3.3.2.7 Web Crawler

Web crawler is a small program that crawl to wide world web. It automatically

passes through the Web. It is also called spider, robot, or wanderers. It is used in this

project to collect huge sets of data to be processed and indexed later. In this project it

was supposed to use Crawler4j because it is good for education purposes, and it is a

fast crawler written in Java. [29]

3.4 The Conceptual Model

The previously discussed hardware and software requirements are going to be

applied in an efficient manner to achieve the project functional and non-functional

requirements. The bellow model (Figure 3.4) demonstrates the conceptual general

methodology followed during the project development. The system stages are

composed of three phases:

 First phase: the LineIndexer code is applied on a large set of data (generated

data in our case) stored in the HDFS and the output is stored there.

 Second phase: the CovertTextToHash code is applied on the output of the

previous phase , the output.txt is stored in a hash table and then it will be

serialized.

 Third phase: In the user interface, the user enters a word, then the serialized

file from the previous phase is deserialized and the code will perform search in

the deserialized hash and outputs the results to the user: outputs the 10 most

frequent files.

27

Figure 3.4: System Conceptual Model

Because our project is based on applying MapReduce algorithm, which is

indexing in our case, on the cloud, the most important and critical phase is the first

one: LineIndexer code. The second following conceptual model (Figure 3.5)

describes how the LineIndexer works. First the data is passed to the map step then the

output of the map is entered in the reduce step to produce the needed indexed file

28

Figure 3.5: MapReduce Phase Conceptual Model

3.5 Proposed Solutions

3.5.1 Utilization of Design Related Standards and Recognition of

Professional Design Codes

3.5.1.1 Cloud Computing Standards:

In our project, because the cloud is chosen to be the most important hardware

resource (as mentioned in section 3.3.1.1), cloud standards are applied. Cloud

computing open standards are influenced with the cloud computing technology

growth. As a result of that, each cloud provider has its own unique API which is not

interoperable with others [7]. One of the organizations working on developing cloud

computing standards is the Distributed Management Task Force (DMTF) and one of

29

the members of this organization is IBM. One of the standards developed by this

corporation is the Open Cloud Standards Incubator [”37]. The DMTF standards focus

on standardizing interactions between different cloud environment by developing

cloud resource management protocols, packaging formats and security mechanisms to

facilitate interoperability [38]. In addition this standard, IBM cloud has standards like:

 Open Cloud Computing Interface.

 Federated security across Clouds.

 Standards for moving applications between Cloud platforms.

 Standards for machine-readable Service Level Agreements.

 Standardized outputs for monitoring, auditing, billing, reports and

notification for Cloud applications and Services.[39]

3.5.1.2 Software Standards:

3.5.1.2.1 Eclipse Standards:

Because we chose eclipse to be our software development environment, we

had to utilize the standards provided by the eclipse. The runtime system of Eclipse is

based on Equinox which is an OSGi standard compliant implementation [40].

3.5.1.2.2 Hadoop Standards:

Hadoop is the platform used to run a MapReduce program on the cloud. To

achieve its goals Hadoop is built on different standards. One of them is Hadoop

streaming: it is a Unix standard streaming used as an interface between the Hadoop

and any software environment like Eclipse which is in our project [1].

Another standard used in the Hadoop environment is the input/output

standard built by Python programming language and which says that the natural input

format is a text file. This standard is supported by all programming languages and

also java which is the language used in our project [1].

3.6 Hardware and Software Design Methodology

3.6.1 Hardware Design Methodology

 As mentioned in the Hardware Requirements section (3.3.1), we are going to

use ,in this project, the IBM blue cloud 1.6. In addition to its features described in

3.3.1 section, the IBM blue cloud was considered as one of the project hardware

needs because this type is the one provided by QU university. Furthermore, all the

project group members attended a 3 day training about this specific cloud type so

dealing with this cloud would be easier. The last thing in this regards is that this cloud

is supported by IBM and any faced problems would be directed to them to be fixed.

3.6.2 Software Design Methodology

http://en.wikipedia.org/wiki/Open_Cloud_Computing_Interface
http://en.wikipedia.org/wiki/Equinox_(OSGi)
http://en.wikipedia.org/wiki/OSGi

30

3.6.2.1 Java Language and Eclipse

Fist starting with the language, java is used as our project language because it

is platform independent: because of using a java virtual machine, java programs can

be run on any platform. This is very important in our project since we are working on

different platforms (Linux, Microsoft). In addition to all what was said, GUI

components are provided in the swing library of the java language and by that, we can

develop our interface in a simple and fast manner. Besides that, java language is one

of our fundamental subjects studied in the computer engineering curriculum, it was

easy to work with it and use it as our programming language.

The used development environment for java is Eclipse. Eclipse is suitable for

both windows and Linux platforms. So, it is a good choice to have it as our java

environment. Also, the eclipse is already tested to work with the Hadoop platform to

write MapReduce algorithms.

3.6.2.2 Code design Methodology

 As we are developing a MapReduce algorithm model and as we are using java

language, we designed java codes to fulfill this purpose. The java codes are well

explained in section 4.1 and the decisions made in those codes and what was exactly

used are explained as follows:

3.6.2.2.1 Set Number of mappers and reducers:

The MapReduce programming model is applied in the project for a specific

application which is indexing. The part responsible for the indexing phase is

demonstrated in the LineIndexer code explained in section 4.2.2. For the main()

method, we can find that the number of mappers is not set (default one) and the

number of reducers is set to 11.

Starting with the number of mappers: it is set to be the default one which

means that the number of mappers is calculated by dividing the total input size over

the block size which is by default 64MB. [1] We choose the default method because it

provides a high level of parallelism.

Moving to the reduce numbers: we chose 11 to be our reduce task number

because referring to statistical calculations: the best number of reduces is the number

of used nodes × 0.95 (6𝑉𝑀𝑠 × 0.95=5). With 1.75, the faster nodes finish their job

and switch to the second wave which provides good load balancing. (6𝑉𝑀𝑠 × 1.75 =
11). As a result of that, increasing the number of reduces will increase the number of

failure. [41].

3.6.2.2.2 SortedList

The sorted list is used for the LineIndexer (map section) code in two manners:

first to store the indexed words, with their location and frequency and then to store the

unused list of words, which is a list of words that is usually are not searched for such

as: the, a, an and that. These words are chosen to be removed from the indexing input

files. Each sorted list has its individual link. We chose to the data structure of sorted

31

list because it has a high speed in inserting the elements (no need to move any

element) and its complexity is O(log2 𝑛) , where n is the number of elements, which

is considered very fast . The second advantage is that it does not have a specific size:

as long as there is a space in the memory, the sorted list will be stored [42]. Another

important thing to be mentioned in this regards is the methodology followed to select

the unused words that should be deleted from the index output file. We looked for the

most frequent words in English and took them from the following website

http://www.world-english.org/english500.htm and then we chose the unused ones for

a search purpose to make the searching process faster.

3.6.2.2.3 HashTable

The hash table is one of the data structures that offers very fast insertion and

searching. In addition to that, hash tables are relatively easy to program. For those

reasons, we chose this data structure to be the storage space for our indexed output

file. The main reason for choosing hash table to save the indexed files is its speed and

high performance. In general, the hash function used in the hash has the most

important impact. For the best function choice, and with a hash of n elements and k

keys, the number of collisions would be (0,k-n) and the number of lookups (1+ k/n)

[43]. A point to be mentioned here is that the hash used in our code is the one

developed by the JAVA langue and we only needed to override the JAVA hash

methods that are not available and the ones we need like word_search().

 There is also another possibility for saving the indexed file in a database.

Using a database is another alternative but we chose hash because of the size of the

value which is not stable and fix: if we use database we have to fix the size if the

second row but our value is not fixed: (the word could be in one file, no files or

hundreds of files) so by using database, we may come to memory waste.

3.6.2.2.4 Serializable File

 Because we are using a hash table, we can get benefit from the serializable

feature which means converting a specific data structure into a sequence of bits stored

in a file. In our project, we used this technique to store the hash table (where the

indexed file is stored) in a ser file.

We had two ways to perform the search application. Either search for the word

directly from the hash table created for each search or to deserialize the ser file and

search in it. We chose the second method because we tested both methods and find

out that searching directly from hash table takes 187 ms. On the other side, searching

from a deserialized file to hash takes 109 ms. This test was performed for an indexed

file of 643Kb size. With this results, we can assume that using a serialized file instead

of a direct hash table would be faster and more efficient and the suggested reason is

that file serializing uses data streaming but hash table doesn’t.

3.7 Design Goals Influenced by System Specifications and Realistic

Constraints

In this project, the system resources and the architectural design were chosen

depending on some important realistic constrains. One of them was the economical

http://www.world-english.org/english500.htm

32

factor, and this is shown in the hardware used in the project, where we didn’t have

the choice to buy a cloud of some higher specifications, but we used the IBM blue

cloud1.6 that is designed for educational purposes, and recently available in Qatar

University (QU).

Another limitation was considered in this project, was the organizational

aspect which also affect the system hardware resources: Although there was

collaboration between some organizations such as IBM organization and universities

like (QU) and (CMU-Qatar), There was no cloud system that enabled us to work

across the cloud, so there was no chance to use a hardware that consisted of multiple

clouds represented as one cloud.

In addition to those aspects, this project was limited by time. For example, in

the design of the applied system, there was a number of improvements that can be

added as discussed in section 6.5, on the other hands, that couldn’t happen because

there was no enough time to explore new fields.

From the other constrains on the designed system, is the bandwidth restriction.

A high bandwidth was needed when data gathering plan was collecting data using

web crawler, even it was needed in uploading the huge set of data from an external

hard drive into HDFS in the cloud, also it was required when we tried to run any code

we had created, specially the code responsible for doing the indexing job. But within

the rate of the bandwidth provided, gathering data plan was changed, and running

codes should be done in the university campus, so we could at least get good

bandwidth rate.

Furthermore, the user interface in this project is designed depending on the

social aspect, where it was considered to provide usability, and enable the user to

utilize it in a easy way. Looking for the political, ethical, health, security and safety

fields, those fields were out of the scope of the designed system.

3.8 Evaluation of The Effect of Design Choices

This system is designed depending on the professional design code.

Furthermore, it does not break any related standards. This provides usability where it

eases the employment of the system for any user. Moreover, this offers flexibility of

adding new features, applications and functionalities to the system. Following these

standards helps us as engineers to evaluate our movements in the project.

3.9 Work Breakdown Structure

This section discusses the work breakdown structure of this project as shown

in table 3.1. The project is divided into nine main tasks and all of these tasks are

performed by all of the team members.

Task 1: Literature Survey and Background: this task is to build a background about

the related topics and technologies needed in the project. Examples of the activities

that contributed to the fulfillment of this task are: gathering information and reading

about cloud computing, MapReduce, indexing, web crawling and Hadoop.

33

Task 2: Access CMU-Qatar cloud: this task was considered because we didn’t get

access to (QU) cloud immediately when we started the project. The task helped us to

know more about the cloud environment. This task includes having accounts on the

CMU-Q cloud. At the same time a Bitvise Tunnelier, SSH Terminal and File Transfer

Client to access the cloud. Then Learn how to create new projects and explore

clusters.

Task 3: Dealing with Hadoop: this task is divided into two main steps: installing and

using Hadoop on the local machine and using Hadoop on Qatar University cloud. A

number of versions of Hadoop were explored in this task in order to find a version

without problems and suits the used environment.

Task 4: Access QU cloud: In this stage, QU cloud was finally set, so accounts were

created and we could access the cloud using VPN client. And IBM training was

provided which offered a brief explanation about the hardware of Qatar University

cloud. Furthermore, illustration of the roles and capabilities of the cloud is provided.

The last day of the training is assigned to deal with cloud and Hadoop projects.

Task 5: Gathering Data: In gathering data task, we considered four different plans:

o Plan A is to get the data from Qatar Petroleum Company(QP). Many

meetings are arranged between Dr. Qutaibah Malluhi and Dr. Khalid

Shaban with QP employees to convince them of the effectiveness of

the new cloud computing technology.

o Plan B is to get data using web crawler, but it was found that the used

crawler inefficient to collect needed set of data within the rest of time

we have to submit the project.

o Plan C is to get the data from al-Jazeera Networks. But also looking for

the time constrain, the idea wasn’t doable.

o Plan D is to generate files using a simple java code, so we can gather

0.5 TB. After getting the data, it is moved to the cloud storage space.

Task 6: Query selection: For this project the indexing query was selected.

Task 7: Demo design and implementation: We have already completed the design and

implementation of the following components:

o MapReduce algorithm for generating an index for the huge input

consisting of large number of documents and a module to convert the

MapReduce-generated index (a text file) into a hash table for faster

search operation;

o Data generation code to supplement the input data collected through

the Web crawler,

o A simple graphical user interface (GUI) to issue a search query and

present search results.

Task 8: Testing and Evaluation: We have done some preliminary unit testing to test

the correctness of the individual modules, and integration testing to validate that the

34

modules can work well with each other (e.g. the search algorithm can work with the

output of the index converter output). More testing is needed to evaluate the

performance of our algorithm and to compare the performance of different scenarios

for running the algorithm (e.g. different input sizes, or platforms with different

number of virtual machines). These performance evaluation experiments have been

designed but not yet executed. this task is to test and evaluate the system. It is

expected that these performance evaluation experiments will be conducted in June

2010.

Task9: which is the last task is the project documentation.

3.9.1 Role of Team Members

Based on the below tasks description each student is responsible for

completing these tasks

Amira:1.1,1.2,1.3,1.4,2,3,4,5,6,7.1,7.2,7.3,8.1,9

Farah: 1.1,1.2,1.31,2,3,4,5,6, 7.1,7.2,7.3,8.1,9

Nadia:1.1,1.2,1.3,1.4,1.5,2,3,4,5,6, 7.1,7.2,8.1,9

3.9.2 Interdependence of Individual Role on the Team Goals

In this project, all the tasks given to the team members ,are relying on each

other. First, they need to explore the needed fields which are cloud computing,

Hadoop platform, indexing MapReduce algorithm. A second step is to gather the data

using files generation. After that, the team should implement the indexing algorithm

on the data sets using the power of Hadoop on QU cloud, and finally evaluation of the

performance can be done.

3.10 Project Schedule

Table(3.1) shows the Gantt Chart Activity of the project. It illustrates each

task with its corresponding time schedule.

Table 3.1: Gantt Chart Activity

Gantt Chart Activity

 = Activity = Completed Activity

Months

1

Oct

2

Nov

3

Dec

4

Jan

5

Feb

6

Mar

7

Apr

8

May

9

Jun

Task1: Literature Survey and

Background
 X

1.1 Reading about Cloud Computing X

1.2 Reading about MapReduce X

1.3 Reading about Hadoop and Hadoop

Distributed File System
 X

1.4 Reading about Crawling X

X

35

1.5 Reading about Generating Files X

Task 2: Access CMU-Q Cloud X

2.1 Having Accounts on CMU-Q Cloud X

2.2 Installing Tunnelier (a free ssh client

for windows
X

2.3 Configuring the Cloud Access X

2.4 Using the Web Browser to Access

Qloud URL and exploring the clusters
 X

2.5 Learning how to create a project on the

cloud with specific criteria
 X

Task 3: Dealing with Hadoop X

3.1 Configuring Hadoop on Local Machine X

3.2 Configuring Hadoop on QU cloud X

Task 4: Access QU Cloud X

4.1 IBM Training X

 4.1.1 Briefly Reviewing Hardware of

Qatar University Cloud
 X

 4.1.2 Understanding Cloud Roles and

Capability

X

 4.1.3 Dealing with Hadoop on Qatar

University Cloud

X

4.2 Having Accounts on QUCloud

 X

4.3 Installing VPN Client

X

4.4 Configuring the Cloud Access and

Using the Web Browser to Access Qloud

URL and exploring the clusters

X

4.5 Creating a New Hadoop Project with

Special Specifications

 X

Task 5: Gathering Data X

5.1 Plan A: Getting Data from Qatar

Petroleum Company (QP)

 X

5.2 Plan B: Use web crawler to gather data

 X

36

5.3Plan C: Getting Data from Al-Jazeera

Networks

 X

5.4 Plan D: Generate files with some

Specifications for Testing

 X

5.5 Moving Data to the QU Cloud Storage

Space

 X

Task 6: Query Selection X

Task 7: Demo Design and

Implementation

 X

7.1 Design Effective Algorithm X

7.2 Implement Indexing Using MapReduce

on The Cloud

 X

7.3 Build the System Interface X

Task 8: Testing and Evaluation X

8.1 Execute on QU Cloud X

8.2 Evaluate Performance X

8.3 Optimize Performance X

Task 9: Research Documentation X

37

CHAPTER 4

IMPLEMENTATION AND DEPLOYMENT

38

4.1 Introduction

This chapter illustrates the implementation and deployment of our design.

Logical flowcharts for basic classes are drawn and explained. Also, you can find a

fully description of the completed integrated system. In addition, we point out to the

computer environment deployment. At the end of this chapter, software installation

and usage steps are listed.

39

4.2 Logic Flowcharts

4.2.1 Generate Data Flowchart

Generating data was the solution for many problems in getting real data. Figure 4.1

and Figure 4.2 show the whole process

Figure 4.1: Generate- Part 1 Flowchart

Buy SmartDraw!- purchased copies print this

document without a watermark .

Visit www.smartdraw.com or call 1-800-768-3729.

40

Figure 4.2: Generate- Part 2 Flowchart

Buy SmartDraw!- purchased copies print this

document without a watermark .

Visit www.smartdraw.com or call 1-800-768-3729.

41

4.2.1.1 Generate Class

 The main method starts with declaring some required objects such as the input file,

number of files to be generated, ..etc. Then the code is divided into two main sections:

 Section 1: lines 44-59 in the code are used to save words from the input file to

array of strings, words[]. This makes getting random word easier by

generating a random number as an index to a random word.

 Section 2: lines 65 to 102 are used to generate the text files. An outer for loop

is used for numbering and naming the output files. Words in each output file

are collected using 3 for loops. The first loop is used to generate 59000 “ a a a

a a ” at the beginning of the output file. The second loop is used to pick

550000 random words from words[] array and put them in the output file. The

last loop is for putting 58000 “ A A A A A ” at the end of the output file. By

the end of the third loop, generating one file is completed and the outer for

loop will take care of switching to generate the next file.

Code is provided in Appendix D section 2. Generate.java.

42

4.2.2 LineIndexer Class Flowcharts

4.2.2.1 Mapper Flowchart

Figure 4.3: Mapper Flowchart

Buy SmartDraw!- purchased copies print this

document without a watermark .

Visit www.smartdraw.com or call 1-800-768-3729.

43

4.2.2.1.1 Map Method

Figure 4.3 shows how the map works. For each file, it makes a list of the

words in the file with their frequencies, and finally, output them all to the reducer as

(word, filename%frequency) pairs. Code is provided in Appendix D, 3.

LineIndexer.java

4.2.2.2 Reducer Flowchart

Figure 4.4: Reducer Flowchart

Buy SmartDraw!- purchased copies print this

document without a watermark .

Visit www.smartdraw.com or call 1-800-768-3729.

44

4.2.2.2.1 Reducer Method

Each reduce task handles a word(the key) to collect all the file names and the

frequencies related to it. Then, it passes the (word, List of files with frequencies) pair

to the final output file. Figure 4.4 demonstrates the process of the reducer. Also, code

is provided in Appendix D, 3. LineIndexer.java.

In LineIndexer class, the map and reduce tasks are configured and called in the

main class. Many configurations can be set. This main is the driver of this

MapReduce project. The list of configurations, used in our code, are as follows (refer

to code listed in Appendix D:3 . LineIndexer.java):

 Line no. 122: set the name of the job for the client to be the class name.

 Line no. 127: set the input path used by the HDFS.

 Line no. 128: set the output path used by the HDFS to store the results.

 Line no. 126: set the number of reducers (refer to section in 3.6.2.2.1 the

methodology to know how this number is chosen).

 Line no. 129 and 130 is used to set the mapper and reducer class.

45

4.2.3 Convert Text to Hash Table Flowchart

Figure 4.5: Convert Text To Hash Table Flowchart

Buy SmartDraw!- purchased copies print this

document without a watermark .

Visit www.smartdraw.com or call 1-800-768-3729.

46

4.2.3.1 Convert Text to Hash Class

Figure 4.5 shows the flowchart of ConvertTextToHash class. This class is

used to convert the text file, which is the output of the LineIndexer, to a hash table

(object of class Hashtable). Then it serializes it and saves it into a .ser file. This file is

used in SearchHash Class to be loaded and used in the search application. The code is

provided in Appendix D, 1.ConvertTextToHash.java

4.2.4 Search in a Hash Table Flowchart

Figure 4.6 illustrates the flow of the searching application. The user enters the

keyword to search for it. Then, if this word exists in any file that indexed using

LineIndexer code, the list of the top 10 files that have highest frequencies is printed to

the user. If this word has a list of files contains less than 10 file, then the whole files

are printed to the user.

47

Figure 4.6: Search in a Hash Table Flowchart

SearchInterface class and SearchHash class are used for searching in the hash

table. The user uses the interface to enter the keyword and to get the list of files (the

result of the searching). However, the SearchInterface class uses SearchHash class for

the actual searching. Codes are provided in Appendix D, 6.SearchHash.java and

7.SearchIntrface.java.

4.2.5 Other Classes

There are many other classes used in coding such as Link class, Link1 class,

UnusedList class and SortedList class. All commented source code is available in

Appendix D.

Buy SmartDraw!- purchased copies print this

document without a watermark .

Visit www.smartdraw.com or call 1-800-768-3729.

48

4.3 Completed Integrated System Deployment

The below figure summarizes the previously discussed classes in section 2.4.

It shows the complete integration of whole system. Starting from generating the

testing input data, passing through the indexing phase, and ending with the user

interface.

Figure 4.7: Completed Integrated System

Buy SmartDraw!- purchased copies print this

document without a watermark .

Visit www.smartdraw.com or call 1-800-768-3729.

49

4.4 Computer Environment Deployment

This section discuses the needed platform for running the system. First of all,

the virtualization system, which is the blue cloud 1.6. As Qatar University students ,

we used the QU cloud. Second, the Hadoop platform, which should be installed and

configured on all the VMs (nodes) in the project on the cloud. In addition, Cygwin,

which is a Linux like environment, is needed to run some commands on the Hadoop

platform. Also, Java Development Kit (SunJDK 1.6.0_06) or Java Runtime

Environment(JRE 1.6) virtual machines are needed in order to run the system. For

further information, refer to section 3.3.1.1, 3.3.2.2, 3.3.2.3 and 3.3.2.6 .

4.5 Software Installation and Usage

This section provides the methodology of software installation and usage of

the system. The following steps are required to run the system correctly:

1. Be sure to have a custom project on the cloud with 8 VMs each with size at least 80 GB.

Each VM should have 3 CPUs for better performance.

2. Download and install on of Java VM (JDK1.6 or JRE1.6)

3. Download Eclipse 3.2 EUROPA.

4. Download and install Cygwin.

5. Download a copy of the used Hadoop on the cloud to your local machine.

6. Configure your local machine by adding the required environment variables and the

needed hosts to the defined hosts in your machine.

7. Add the Hadoop plugins to Eclipse.

8. Create a new Hadoop location.

9. Test the connectivity between your machine and HDFS on the cloud.

10. Create a new MapReduce project and extract the given project(saved on the CD, called

“FinalSeniorProject”) to it.

11. Create a new directory on the HDFS for the input files and upload them on this directory.

12. Run the LineIndexer.java on the Hadoop location that you have created. Be sure to

include the path of the input folder in the main of the line indexer, and specify the output

path.

13. The output is 11 text files, each reducer produces a separate output file.

14. Download these files to a new directory in your local machine.

15. Merge them by using any merging software such as TXTcollector, which is a free

merging tool.

16. The output of this program should be your input to the ConvertTestToHash class.

17. Run ConvertTestToHash class. Do not forget to put the path of the input file in the main

method. This running should output a output.ser file.

18. Put output.ser file in “C:/ “.

19. To run the search application, you have two methods.

a. Run the SearchInterface.java. Then, the interface will appear.

b. Copy Searching.jar file from the given CD to “C:/ ” on your local machine. Then

go to your command line and change the directory to “C:/”. Next, write this

command “java –jar Seaching.jar”. Then, the interface will appear.

20. Now, you can search for any word included in the input files.

For a clearer and more detailed instruction of installation and usage, see Appendix

A and Appendix B.

50

CHAPTER 5

TESTING AND EVALUATION

51

5.1 Introduction

This chapter is concerned with a very critical step software engineering

designers do after analyzing, designing, and implementing their system. This step is

testing. Testing is finding out the difference between the expected system’s behavior

and the implemented system’s one. The purpose is to find out faults in the

implemented software in a panned manner. [31] In this chapter, the testing plan is

presented, then the different testing stages are elaborated including unit testing,

integrated testing system testing, and performance testing. Finally, an evaluation of

the system and its impact on both computing and economy and society is stated.

5.2 Test Planning

One of the success keys for testing is planning ahead what should be tested

and when. Test planning should occur early, i.e. in the development phase so that we

would have sufficient time and skills for testing [31]. From that perspective, we had

our own testing plan and for each project piece, testing was scheduled. First, the

generated code was tested individually, then testing the whole system was the next

step and it was scheduled to be tested as figure5.1 shows:

Figure 5.1: Test Planning

5.3 Generating Data Testing

Generating data code had to be tested in the applied system (Refer to

Appendix D part 2.Generate.java for the code). Because it is a separate part, it should

be tested using unit testing. The generation code is tested with state-based testing as

the figure5.2 shows:

52

Figure5.2: State Chart Diagram for File Generation

After testing the Generate.java code. We decided to use it as a source to

generate the needed data for our project after trying all possible planes previously

mentioned in the report: crawler, QP, Al-Jazeera (refer to section 3.10 to look for

possible plans for generating the data)

5.4 Unit Testing

Unit testing is a concept of decomposing the whole system into individual

blocks. Each one of them is tested independently of the others. This type of testing is

very powerful for lots of reasons: first, it reduces the system complexity. Second, it

makes it easier to find out the faults for each individual block and third, it allows the

designer to test lots of blocks in parallel without the need to wait for each piece to be

individually tested [31].

Unit testing was utilized in our project mostly for code testing because the

code was easily dividable. The code was decomposed into 3 main tasks. The first one

is the LineIndexer code which performs the indexing MapReduce algorithm, the

second task is the searchHash where we create a hash from a file and we serialize it

and search in it. Finally, the interface code where we use the Java Swing library to

provide a simple search interface for the user.

5.4.1 LineIndexer Code

Starting with the LineIndexer code, and looking deeply into its details, we can

notice that we can split it into two parts; the map and the reduce parts, and test each

one separately using different methods.

The map was tested using the path testing (white box testing) where all

possible paths in the code where investigated to define the faults in the map

53

implementation. The bellow activity diagram describes how this test is performed on

the map code and how it was implemented to interpret the map faults:

Figure 5.3: Equivalent flow graph for the Map implementation

From the previously shown figure5.3, we can notice that all the Map code

paths are elaborated. Using it, we can determine a list of different cases and determine

their corresponding paths referring each time to the activity diagram. Refer to table

5.1 to see all possible tested cases in the system for Map implementation.

Table 5.1: Test Cases and Their Corresponding Path for the Map Activity Diagram

Test Case Path

(itr = cloud) // supposed cloud word only

appear once

{cloud Filename%1}

(itr = is) Go to next iteration (is is from unused list)

(itr = project) // supposed project word

appeared 3 times in the file

{project Filename%3}

(itr = null) // supposed no words are left in

the file

Go out of the map implementation

Another point to be mentioned in testing the map code is testing each part of

the map individually. There are three concepts involved in the map: the link class, the

SortedList class and the UnusedList class. For each class, some input samples were

provided and the output was interpreted, so blackbox testing was exploited for each

54

class used in the map class. One of the faults discovered during the UnusedList

blackbox testing is that files are not supported to be used in the MapReduce

programming model: we tried to let the unused words list from a file so it is easier to

change those words but this did not work.

Moving to the reduce phase of the LineIndexer code, the method used to test

this portion of the LineIndexer code is also blackbox testing. Blackbox testing’s

advantage is that it reduces the number of test cases: all possible inputs are partitioned

into equivalent classes and a test case is used for each class [31]. In testing the

reduce, we tried to put as input for reduce and output of the map a string instead of a

text type but this did not work: reduce method only accepts text input format. Because

the input for reduce is text type, special characters and numbers are accepted to be in

the file name.

After testing the whole LineIndexer code (refer to Appendix D part

3.LineIndexer.java) and after verifying that it worked correctly and as expected, this

code was used to index the set of input data that will be manipulated to apply a simple

search interface.

5.4.2 SearchHash Code

In the searchHash code, different testing techniques are applied on the

individual methods in the class. The put, containsKey and get methods are

implemented from the ones provided by the Java HashTable library so we didn’t have

to spend time testing them. The ones that were tested are the wordSearch and the

serializable methods. Looking at the wordSearch method: state-based testing is

applied. It is a recent testing method that depends on comparing the resulted system

states to the expected ones. For this purpose, the statechart diagram is used [31]. This

technique is applied in our project as the next figure shows:

55

Figure 5.4: Statechart Diagram for wordSearch Function

Moving from the wordSearch method to the serializable method, this method

was tested using blackbox testing. A set of possible inputs are partitioned into

equivalent classes and each class was tested. For example a wrong path is put in the

serializable output stream and the code could detect the error. Another example of

testing is using a hash of different sizes and all of them were successfully converted

into a serializable file so there is no hash size limit as long as we have a space in the

disk to save the serializable file.

The previously tested part ,after verifying that it worked correctly, is used in

the project to serialize the output of the index code. We will use precisely the code for

serialization and for searching in hash tables.

5.4.3 System Interface

 The system interface testing may be viewed from two diverse perspectives.

First point to be tested in the interface may be following the unit testing technique.

Another interesting point to be tested regarding the interface is the usability testing.

Starting with the unit testing. The interface code was tested this way and more

precisely, it was tested using the blackbox testing. In this test, all possible input cases

are tested. An example of that is trying to enter to the search window the same word

in capital and small (where Note (1) is stated in figure 5.5) and the result was not the

same. From that we could conclude that there was a fault in the code and we had to

fix it, so when the input is entered, it is not case sensitive as shown in figures 5.6.

56

Figure 5.5: Sample of Screen Shot Interface

Figure 5.6: Sample of The Interface that Shows Not Case Sensitive Input

Another example about black box testing for the system interface , is entering

a word that does not exist in the used indexed data, and the result was having an error.

So problem was solved by printing a sentence “ the word does not exist in the files”

when the user enters unavailable word as shown in figure 5.7

Note(1)

57

Figure 5.7: Output for unavailable word in the files.

Talking about the interface usability test, scenario testing method was chosen

to be the type of usability test we are performing. Scenario test is a test where one or

more users are presented to the system. This test allow designers to determine how

much the system is usable and how the user deals with the system description [31]. In

our project, we decided to apply this test by providing a read me brochure to a random

user and observe how he interacts with the system. As a result, we got significant

feedbacks about the system and those feedbacks were considered and were used to

improve the system.

5.5 Integrated Testing

 The integrated testing is a test type that focuses on figuring out system

faults that are not well tested in the unit testing by focusing on small components of

the whole system. It’s methodology is very simple: first 2 components are integrated

and tested and when no faults are found, additional components are added [31]. There

are four types dedicated for integrated testing: big bang testing, bottom-up testing ,

top-down testing and finally sandwich testing. In our project (figure 5.8), the bottom-

up testing was considered as the best testing technique to fit our hierarchal system

design. In this specific strategy, each bottom layer component is tested individually

then integrated with up layer components. In layer III, first the cloud environment

(subsystem F) was exploited then the Hadoop distributed file system (subsystem E) is

tested (refer to platform testing in section 5.5.1). Moving to the layer II, triple test was

applied on the indexing application (subsystem C) integrated with the subsystem E

and F. In the same time, search in hash (subsystem B) and serialize hash (subsystem

D) is tested (refer to unit testing section 5.3.2). To finish, layer I is tested using

quadruple test is applied where four subsystem were tested and integrated together: B,

C, D and search user interface (subsystem A).

58

Figure 5.8: Bottom-up test strategy

5.6 System Testing

 Unit and integrated testing focus on individual components and the interfaces

between the components. After this step is performed, system testing is applied to

ensure that the complete system complies with the specified functional and non-

functional requirements [31]. The actions to be performed in the system testing in our

project is composed from: platform testing, installation testing and performance

testing.

5.6.1 Platform Testing

Platform testing is a method for testing used to test the used system platform.

In our case, the platform testing is divided into two major sections: the Hadoop

platform test and the cloud infrastructure testing.

5.6.1.1 Hadoop Testing

Because Hadoop was chosen to be our MapReduce programming platform, we

had to make sure it is working as expected. The first thing done in this regards is

installing the local Hadoop and test it on our machines. Starting with Hadoop version

0.16.4 till 0.20.1, all those versions were tested to be working fine. The problem

appeared when trying to connect the eclipse software development environment with

the different Hadoop versions. To solve this problem, online searches were performed

(https://issues.apache.org/jira/browse/HADOOP-5225 is an example of the most

useful websites to debug the Hadoop bugs). From the search done about Hadoop

development, we figure out that all Hadoop versions need to be reconfigured and

https://issues.apache.org/jira/browse/HADOOP-5225

59

some bugs need to be fixed so Hadoop runs properly. The solution for this problem

was getting a ready tested version to work on. CMU could provided for us a debugged

version by the CMU system administrator. This was Hadoop 0.20.1 and it was tested

on our cloud and the eclipse connection was also elaborated. To make sure that

everything was working fine, WordCount code and the original LineIndexer code

provided by yahoo was implemented as a MapReduce project and we ran it on our

cloud location and it worked fine.

5.6.1.2 Cloud Testing

After testing the Hadoop platform and running the LineIndexer code on a

small set of data, the same code was tested on larger set of data (1.6 MB). While

observing the cloud status and the VMs usage when the code was running, we found

out that we were running out of recourses and we need more CPUs and more storage

space for each VM. First, we had to change the cloud project system specifications to

support at least 250 GBs as shown in figure5.9 (6 VMs each VM with 255 MB). From

this point, cloud problems started to showing up: using the cloud, we find out that the

cloud status was not stable and the Hadoop was wrongly configured in our cloud. We

also discovered some cloud limitations , as an example of them that the cloud

interface can’t support a project with 8 VMs each with 255GB. The solution of this

problem was getting help from IBM corporation.

Figure 5.9: State of Nodes in the Cloud

5.6.2 Performance Testing

The following two sets of experiments are designed to study the of

MapReduce parallelism in many aspects.

60

5.6.2.1 Correctness

Experiment 1: Testing the correctness of the indexing code

This experiment tests if the output of the LineIndexer is as expected or not.

Testing Environment is shown in Table 5.2.

Table 5. 2: Testing Environment for Experiment 1.1

Constraints Specifications

Input Data Small, about 2 MB – 1 GB

No of Virtual Machines 6 VMs

Disk Size per VM Could be from 120 GB - 255 GB

Memory (RAM) Size per VM 3072 MB

No of CPU for Data Nodes 3 CPUs

No of CPU for Name Node 4 CPUs

5.6.2.2 Response Time

In our case, we define response time to be the time that the MapReduce job

takes to be terminated successfully.

Experiment 2.1: Study the impact of the number of VMs

 For this experiment, three different cloud projects should be created (assuming

the total available HDFS storage is 512 GB):

1. Two VMs (each of 256 GB)

2. Four VMs (each of 128 GB)

3. Eight VMs (each of 64GB)

 Number of reducers tasks is 5 in this experiment. Other Specifications are

shown in Testing Table 5.3

Table 5. 1:Testing Environment for Experiment 2.1

Constraints Specifications

Input Data 256 GB

No of Virtual Machines Vary

Disk Size per VM Vary as shown in the described above steps

Memory (RAM) Size per

VM

3072 MB

No of CPU for Data Nodes 3 CPUs

No of CPU for Name Node 4 CPUs

Experiment 2.2: Study the impact of the number of reducers

For this experiment, the same job should be run three times with three different no

of reducers and the same other specifications, which shown in Table 5.4.

61

1. default (one reducer)

2. one wave (number of VMs * 0.95)

3. two waves(number of VMs * 1.75)
1

Table 5. 2:Testing Environment for Experiment 2.2

Constraints Specifications

Input Data 256 GB

No of Virtual Machines 6 VMs

Disk Size per VM Could be from 120 GB - 255 GB

Memory (RAM) Size per

VM

3072 MB

No of CPU for Data Nodes 3 CPUs

No of CPU for Name Node 4 CPUs

Experiment 2.3: Study the impact of the input size

In this experiment, the throughput is reported. The same job should be run three

times with three different sizes of the input with the same other specifications, which

shown in Table 5.5.

1. One GB

2. 256 GB

3. Half TB

Table 5. 3: Testing Environment for Experiment 2.3

Constraints Specifications

Input Data Varies

No of Virtual Machines 6 VMs

Disk Size per VM Could be from 120 GB - 255 GB

Memory (RAM) Size per

VM

3072 MB

No of CPU for Data Nodes 3 CPUs

No of CPU for Name Node 4 CPUs

Experiment 2.4: Study the impact of the number of input files

For this experiment, the same job should be run three times with three

different no of files. The total input size is equal for trials. Table 5.6 shows the

relation between number of files and the size for each file. Other specifications are

shown in Table 5.7.

Table 5.4: Relation between Number of Files and Size of Each Size

Size of Each File No of Files

04 MB 65,536

1
 Refer to section 3.6.2.2.1

62

16 MB 16,384

64 MB 4096

Table 5.5: Testing Environment for Experiment 2.4

Constraints Specifications

Input Data Small, about 2 MB – 1 GB per file

No of Virtual Machines 6 VMs

Disk Size per VM Could be from 120 GB - 255 GB

Memory (RAM) Size per

VM

3072 MB

No of CPU for Data Nodes 3 CPUs

No of CPU for Name Node 4 CPUs

With the time limitation and problems faced with the cloud, see section

5.6.1.2, we could only do Experiment1 and a part of Experiment2.2. The expected

output from experiment 1 was produced after the job was terminated successfully.

Figure 5.10: Snapshot of the Console for Running a MapReduce Job (1 GB- 5 Reducers)

Also, the output was examined by complete the whole process until using the

interface and it succeeded.

63

In Experiment 2.2, we could not use 256 GB as input data due to the same

limitations. Input data of 1GB, 5 GB and 25 GB could be tested. Regarding 1 GB

input data, when 1 reducer task was tested, the job was finished after 7 minutes,

resulting with 1 output indexed file. Using wave 1 that applied 5 reducer tasks

resulted with 5 output indexed files within 5 minutes and 25 seconds. But when 11

reducer tasks representing the wave 2 were used, the output was 11 indexed files for

the inputted 5G , and the output resulted within 37 minutes and 48 seconds. The

results for 1G input are shown in figure 5.11.

Figure 5.11: Reducer Task vs. Time when data input is 1GB

While 5 GB was used as input data, when 1 reducer task was tested, the job

was terminated after 35 minutes. Using wave 1 that applied 5 reducer tasks finished

within 32 minutes. On the other hand, when 11 reducer tasks representing the wave 2

were used, the output resulted within 270 minutes. The results for 5G input are shown

in figure 5.12.

Figure 5.12: Reducer Task vs. Time when data input is 5GB

0

20

40

1 Reducer Task 5 Reducer
Tasks..

11 Reducer
Tasks

Reducer Task vs. Time

0

100

200

300

1 Reducer Task 5 Reducer
Tasks..

11 Reducer
Tasks

Reducer Task vs. Time

64

Using 25 GB as input data, the indexing program using 1 reducer was

terminated after 12 hours, 23 minutes and 40 seconds, In addition to that, it was ended

within 2 hours,6 minutes and 4 seconds when 5 reducer tasks were used. But when 11

reducers were applied, the job finished after 4 hours and 4 minutes. The results for

25G input are shown in figure 5.13.

Figure 5.13: Reducer Task vs. Time when data input is 25GB

Depending on the previous results, and referring to section 3.6.2.2.1 ,we think

that the used input data is not that enough to test the efficiency of using wave 2

compared to the efficiency of using wave1. So when we are going to complete the

testing plan, huge sets of data as described before will be used.

5.7 System Evaluation with Respect to its Impact on Computing

Environment and Society

5.7.1 Computing Environment

This project provides interactions between too many fields since it deals with

analyzing huge sets of data using a recent technology presented by the cloud

hardware. The designed project cloud be improved to work on oil and gas data sets

instead of using generated data. The suggested plan would contribute very much in

developing the abilities of relevant and important areas in search such as oil and gas

production environment using data mining in the designed cloud computing model.

 The previously suggested idea could be applied if QP plan was achieved but

since the plan changed because Qatar Petroleum (QP) didn’t accept to provide their

sensitive data to the project, and the project become data analysis using MapReduce

Model on the cloud. This plan has a role in the field of cloud computing in Qatar and

specially Qatar University where it is a new implemented technology. Although there

are some limitations in using the cloud, over time it’s going to be more mature, so

specialized people can use more features and create new applications which can

contribute in many other fields in Qatar and the middle east. Furthermore, making a

0

500

1000

1 Reducer Task 5 Reducer
Tasks..

11 Reducer
Tasks

Reducer Task vs. Time

65

small search interface from the indexed data contributes in the search field,

particularly if the project is improved to handle Arabic Language content.

5.7.2 Economy and Society

 Since this project is implemented within the scope of some important areas

like cloud computing and searching, then it takes the impact and influence form those

areas in economical and social fields. Looking for the economical impact of the used

hardware in the project, blue cloud 1.6 brings hardware cost lower. A cheap terminal

with a keyboard and a mouse would be sufficient to perform the same tasks that

expensive large hardware requirements for each client including large memory and

fast CPUs can achieve. Cloud computing will also offer faster time to market:

companies will have the ability to deploy applications in small period of time without

changing the code ultimately which enables them to begin making a profit quicker.

Although cloud computing has these positive impacts, local industry is not ready yet

to adapt this kind of technology. Hopefully over time, it is expected to improve and

organizations will realize how much it can provide benefits and profits to their work.

In addition to that, this project has impacts on the society because it provides a small

user interface for searching which enables any user to search easily for certain word,

and it would provide higher impact if the system improved to deal with Arabic

Language.

Another benefit of this project is that it increases the collaboration between

multiple organizations in and outside Qatar (e.g., QU,CMU-Qatar, IBM organization).

As a result of that, efforts can be gathered to create new valuable projects. Finally,

this project is considered an important first step in exploring the cloud computing area

in Qatar University, Qatar, the gulf, and middle east.

66

CHAPTER 6

CONCLUSIONS AND FARTHER WORK

67

6.1 Introduction

This chapter presents project conclusions. Also, the chapter highlights the

challenges faced strengths, and weaknesses in the work done for the project. Finally

recommended improvements and further work are identified to add more value to the

project.

6.2 Main Conclusion

Data analysis using MapReduce programming model on the cloud project

highlighted how the cloud computing technology can influence the performance of

useful queries. In this project we were able to show the effectiveness of cloud

computing model on search applications using parallel indexing. Motivated by the

need to process large datasets, MapReduce programming model incorporates very

easy and clean concepts that programmers don’t have to worry about the complex

problem of designing, implementing and managing parallel code. Capitalizing on

these ideas, the project designs an affective and useful document search application

that employs an index file produced through parallel (MapReduce- and cloud- based)

processing of documents. A remarkable result that was experienced during the

system architecture is that even small design choices may significantly effect the

application performance. Accomplishing the previously described goals opened the

opportunity for effective collaboration between different universities (QU and CMU)

which was a great experience and a change for exchanging knowledge.

 Although the project could achieve most of the its desired goals, extensive

performance testing did not have the chance to be completed and this was because of

the various problems described in the challenges section (6.3). However, as this senior

project is a part of a Qatar National Research Fund project supported under the

Undergraduate Research Experiences Program (UREP), we will have the chance to

continue this work and complete the performance testing. In addition to that, further

improvements can be put in consideration to improve the system outcomes in the

coming future.

6.3 Challenges and Anticipating Approach for each Challenge

This has been a very challenging open-ended but (at the same time) very

rewarding project. As part of our ongoing project and with a strong intention to

achieve the project objectives, a list of challenges from different perspectives was

confronted. Some problematic issues showed up during disparate project progress

stages. Nevertheless, in each and every challenging step, an alternative viable

approach was taken to proceed further in the project schedule.

The first major challenge associated with our project was exploring the cloud

computing model. In essence, the major concern was the project's main topic "cloud

computing" which is very recent field the world is exploring. In fact, our project is

considered as one of the first university experiences, in the gulf region, dealing with

cloud computing. Qatar University cloud was installed on the 13th of December 2009

and that leaded to another challenge: configuring the IBM cloud was at the end of the

semester and, as a result, we had to find and depend on an alternative resource, which

68

was the Carnegie Mellon University (CMUQ) cloud. Using CMUQ cloud was loaded

with several and long configuration steps to access. In addition to that, it handled

numerous unforeseen problems which consumed a lot of time to solve and was, as a

matter of fact, accomplished after more than one month of hard work.

After successfully accessing the cloud, the next challenge was exploring the cloud

environment and how it works including some technical issues and configuration

steps. Help and guideline resources were very limited and the online documentations

were the only possible and available help we could get. However, following the

online instructions was full of ambiguous parts and a lot of time was spent trying to

understand and figure out those parts.

The trouble with cloud computing is that it encompasses such a huge range of

technology offerings and one of them is Hadoop. After exploring the cloud

environment, the next task was to deal with the Hadoop platform. The aim was to

connect Hadoop with the Eclipse software development environment installed in our

machines and run a MapReduce project to experience the use of Hadoop in a

MapReduce model. This task was first accomplished in the CMU cloud because of

some technical issues with the QU cloud but also a large amount of time was spent

with Mr. Brian Gallew, the CMU system administrator, to make this thing works.

Switching to QU cloud, the greatest help of this part was from Mr. Alfredo

Cappariello, IBM cloud computing IT Specialist, who provided valuable support in

solving this problem by using IBM plug-ins instead of Apache plug-ins of the Eclipse

for the Hadoop. After this step was accomplished, configuring the installed Hadoop

for our purposes was the next challenge. Qatar University IT team did a great effort in

this regards, yet this also took a long period of time to be fixed.

The next point to be mentioned regarding this section is the source of data and

data collection part. First, historical databases generated by Oil and Gas Production

Systems (OGPS) by Qatar Petroleum (QP), since 30 years, was planned to be used to

answer useful queries about trends and patterns of gas reservoirs and oil fields using

the IBM Blue Cloud 1.6 at Qatar University. Unfortunately, this part of the project did

not complete successfully. The reason is the long time process it took to convince QP

Company to trust providing their sensitive data to the project. For that, it would be a

brave step from QP to offer their OGPS data to the private IBM cloud at QU. Our

alternative plan was to use a crawler code and run it to gather at least half terabyte of

data size. The crawler that we used was not properly documented, which was the main

reason for us to take a long period understanding it. However, with the help of Dr.

Sayed Ahmed Hussein, instructor at QU, we could fix the code and run it. The other

thing about the crawler is that it was very slow(400 megabyte per day at most), so we

thought of another alternative. Al-Jazeera Networks was the third option we had. This

company is rich of Arabic txt documents that can be beneficial to our project. Again

this process took longer than expected! Our last plan was to generate data by writing a

java code.

After generating the data, we decided to run it on our cloud (at least1GB). With

this large set of data, IT needed to generate a new project with new 8 VMs that

support at least 40GB but they did know how to set this new project because of lost of

cloud problems and miss-configuration.

69

6.4 Strengths and Weakness

Regardless of all the faced challenges during system development, there is a

list of strengths and weaknesses points we can spot the light on. Starting with the

strengths ones:

 One of the most important strengths in the project, which gives it a

distinguishable value, is that it collects a wide range of technologies and

standards. Looking deeply to the produced system, we can see that it

includes: cloud computing and virtualization technologies, MapReduce

programming model, Hadoop platform, data structure concepts, web

crawling field, Linux OS commands and various secured remote access

software (SSH, VPN…)

 The other strength point to be mentioned is applying a MapReduce

programming model on the QU cloud to produce a useful and effective

query which is indexing. With the help of MapReduce, processes are

distributed using Hadoop platform and as a result, they will be processed

in a very fast manner.

 Moving now to the weakness points that the system suffer from is:

 The first point to be considered as a weakness one when designing the

system is the way of generating the data. After a long process of looking

for real data, we decided to work on generated data from a JAVA code.

Testing on those produced data was fine, but it would be more real life

relevant and realistic to test on actual data.

 As we did the system interface GUI components because of time

limitations, the produced system can’t be accessed only when it is

downloaded on the device. This access limitation can be overcome if

designing the system as a web application: the access can be from even the

web.

6.5 Suggested Improvement and Further Work

Even though data analysis of large set of data using a MapReduce model on

the cloud project achieved the desired goals and objectives, we have to point out that

there is some further work that can be done to improve the project. Our developed

application opens the door for future improvements that can be directed to three

different fields.

First, the improvements dedicated for us as the project developers:

 The data source would be replaced from generated txt files using

JAVA code to actual data from institutions or companies and change

the application to fed their needs and interests. A good idea is

applying the application on Arabic data sets and use it to enrich the

Arabic research field.

 The hash table used to store the indexed file use linear probing as a

collision solution. A better idea is to use hash table that solves the

70

collision using the double hashing to increase the application

performance.

 In the LineIndexer code, a good practice would be changing the code

so the user can enter the number of mappers and reducers and input

and output paths. We can make it using GUI components or entering

the arguments from the main () method.

 Another improvement in the search interface would be letting the

user enter the path of the serializable file from the search window.

 The search interface is implemented using the GUI components. A

remarkable improvement would be changing the search interface to

be a web interface so the application can be accessed and shared

within the web.

Second, the improvements dedicated for the MapReduce developers:

 In the map class inside the LineIndexer, the unused list words are

taken from a method. An improvement in this regards would be letting

the unused list take the unused words from a file so the user can

change it easily without the need to go back to the code. This idea

can’t be implemented in the map because reading from a file is not

supported by map class. It would be very helpful for programmers if

reading from file is supported by MapReduce algorithm.

 The reduce method stores the output in a Text file. It would positively

affect the performance if we can store the output directly to a hash

instead of saving it in a txt file then change it to hash. Also this

feature is not supported by the MapReduce algorithm and it would

give programmers more freedom when programming applications.

Third, the improvements dedicated for the Qatar University cloud developers:

 The QU cloud should be configured properly with stable state for

improving and encouraging future cloud researches.

 The cloud features should be improved and be more usable. For

example, the cloud interface does not support 8 VMs each of 255GB

as Mr.Sajeer Thavot, Senior System Administrator in IT service,

stated. Another thing needed to be fixed is the error message that

appears in the cloud interface when there is no actual error which is

“server offline” message as shown in the figure 6.1

71

Figure 6.1: The error message in the QU cloud interface

72

References

[1] T.White, Hadoop The Definition Guide. United States of America: O’Reilly

Media ,2009,pp. 1-4,28 32,35

[2] ”Hadoop on Demand,” [Online document], 2008 Aug 20, [cited 2009

Oct],Available: http://Hadoop.apache.org/common/docs/r0.17.1/hod.html

[3] “Map/Reduce Tutorial,” [Online document], 2009 Sep 1, [cited 2009

Oct],Available:http://Hadoop.apache.org/common/docs/current/mapred_tutorial.html

[4] Carnegie Mellon University, Computer Science department, Power point

presentation for Dr.Majed,Lec-07,slide: 11-12,2010. Available:

http://www.qatar.cmu.edu/~msakr/15319-s10/lectures/lecture17.pdf. [Accessed May

15, 2010

[5] Carnegie Mellon University, Computer Science department, Power point

presentation for Dr.Majed,Lec-11,slide: 14-15,2010. Available:

http://www.qatar.cmu.edu/~msakr/15319-s10/lectures/lecture11.pdf. [Accessed May

15, 2010

[6] Carnegie Mellon University, Computer Science department, Power point

presentation for Dr.Majed,Lec-17,slide: 07,2010. Available:

http://www.qatar.cmu.edu/~msakr/15319-s10/lectures/lecture17.pdf. [Accessed May

15, 2010

[7] ”Cloud Computing,” [Online document], , [2009 Oct-2010 May], Available:

http://en.wikipedia.org/wiki/Cloud_computing

[8] Jonathan Strickland, ”How Cloud Computing Works,” [Online document], ,

[cited 2009 Dec 29], Available: http://communication.howstuffworks.com/cloud-

computing.htm

[9] [”VPN Web Access”, [Online document], , [cited 2009 Dec 17], Available HTTP:

http://www.alpha-apr.com/vpn/

[10] “CloudBerry Explorer for Amazon S3 Screenshots” ,[Online document],,[cited

2009 Dec 29], Available:http://www.softpedia.com/progScreenshots/CloudBerry-

Explorer-for-Amazon-S3-Screenshot-113427.html

[11] Tony Bain, ”What is Hadoop”, [Online document], 2008 Oct 15, [cited 2009 Dec

28], Available : http://blog.tonybain.com/tony_bain/2008/10/what-is-Hadoop.html

[12] “Introduction to Cloud Computing Architecture”, [Online document],2009 Jun ,

[cited 2009 Dec 16], Available: http://www.sun.com/featured-

articles/CloudComputing.pdf

[13] “Amazon_VPC,” [Online document], , [cited 2009 Dec 28], Available:

http://en.wikipedia.org/wiki/Amazon_VPC

http://hadoop.apache.org/common/docs/current/mapred_tutorial.html
http://www.qatar.cmu.edu/~msakr/15319-s10/lectures/lecture17.pdf
http://www.qatar.cmu.edu/~msakr/15319-s10/lectures/lecture11.pdf
http://www.qatar.cmu.edu/~msakr/15319-s10/lectures/lecture17.pdf
http://en.wikipedia.org/wiki/Cloud_computing
http://www.alpha-apr.com/vpn/
http://www.softpedia.com/progScreenshots/CloudBerry-Explorer-for-Amazon-S3-Screenshot-113427.html
http://www.softpedia.com/progScreenshots/CloudBerry-Explorer-for-Amazon-S3-Screenshot-113427.html
http://blog.tonybain.com/tony_bain/2008/10/what-is-hadoop.html

73

[14] Platform as a Service,” [Online document], , [cited 2009 Dec 18], Available

HTTP: http://en.wikipedia.org/wiki/Platform_as_a_service

[15] ”Hadoop,” [Online document], , [cited 2009 Oct 10], Available:

http://en.wikipedia.org/wiki/Hadoop

[16] ” What is Hadoop? Big Data in the Enterprise”, [Online document], , [cited 2009

Oct 20], Available:

http://www.vmware.com/appliances/directory/uploaded_files/What%20is%20Hadoop

.pdf

[17] “HDFS Architecture,” [Online document],2009 Sep 1 , [cited 2009 Oct 13],

Available : http://Hadoop.apache.org/common/docs/current/hdfs_design.html

[18] ”MapReduce,” [Online document],2009 Sep 1 , [cited 2009 Oct 13], Available :

http://m.blog.hu/dw/dwbi/image/2009/Q4/MapReduce_small.png

[19] ”MapReduce,” [Online document], , [cited 2009 Dec 20], Available:

http://en.wikipedia.org/wiki/MapReduce

[20] ” 5-MapReduce Algorithms,” [Online document], , [cited 2010 May. 18],

Available: http://Hadoop.apache.org/common/docs/current/mapred_tutorial.html

[21] [“Indexing definition,” [Online document],, [cited 2010 May. 18], Available:

http://www.google.com.qa/search?hl=en&safe=active&defl=en&q=define:indexing&

ei=BzjzS8PFKYjGrAfxtfnUDQ&sa=X&oi=glossary_definition&ct=title&ved=0CB

MQkAE&safe=active

[22] [“Inverted Index,” [Online document],, [cited 2010 May. 18], Available:

http://en.wikipedia.org/wiki/Inverted_index

[23] ” Amazon Elastic MapReduce”, [Online document], , [cited 2009 Dec 28],

Available HTTP: http://aws.amazon.com/elasticMapReduce/

[24] [”Amazon S3”, [Online document], , [cited 2009 Dec 28], Available HTTP:

http://en.wikipedia.org/wiki/Amazon_S3

[25] ”Web Crawler”, [Online document], , [cited 2010 Apr 29], Available:

http://en.wikipedia.org/wiki/Web_crawler

[26] ”What is a Web Crawler”, [Online document], , [cited 2010 Apr 29], Available:

http://www.wisegeek.com/what-is-a-web-crawler.htm

[27] “WebCrawler”, [Online document], , [cited 2010 Apr 29],

Available(http://java.sun.com/developer/technicalArticles/ThirdParty/WebCrawler/

http://en.wikipedia.org/wiki/Hadoop
http://www.vmware.com/appliances/directory/uploaded_files/What%20is%20Hadoop.pdf
http://www.vmware.com/appliances/directory/uploaded_files/What%20is%20Hadoop.pdf
http://hadoop.apache.org/common/docs/current/hdfs_design.html
http://m.blog.hu/dw/dwbi/image/2009/Q4/mapreduce_small.png
http://en.wikipedia.org/wiki/MapReduce
http://hadoop.apache.org/common/docs/current/mapred_tutorial.html
http://www.google.com.qa/search?hl=en&safe=active&defl=en&q=define:indexing&ei=BzjzS8PFKYjGrAfxtfnUDQ&sa=X&oi=glossary_definition&ct=title&ved=0CBMQkAE&safe=active
http://www.google.com.qa/search?hl=en&safe=active&defl=en&q=define:indexing&ei=BzjzS8PFKYjGrAfxtfnUDQ&sa=X&oi=glossary_definition&ct=title&ved=0CBMQkAE&safe=active
http://www.google.com.qa/search?hl=en&safe=active&defl=en&q=define:indexing&ei=BzjzS8PFKYjGrAfxtfnUDQ&sa=X&oi=glossary_definition&ct=title&ved=0CBMQkAE&safe=active
http://en.wikipedia.org/wiki/Inverted_index
http://aws.amazon.com/elasticmapreduce/
http://en.wikipedia.org/wiki/Amazon_S3
http://en.wikipedia.org/wiki/Web_crawler
http://www.wisegeek.com/what-is-a-web-crawler.htm
http://java.sun.com/developer/technicalArticles/ThirdParty/WebCrawler/

74

[28] ”Overview”, [Online document], 2010 May 15 , [cited 2010 May 18], Available:

http://crawler.archive.org/

[29] ”Web Crawling”, [Online document], , [cited 2010 May 18], Available:

http://www.ics.uci.edu/~djp3/classes/2009_01_02_INF141/Lectures/Discussion02.pdf

[30] ”WebSPHINX: Project Web Hosting - Open Source Software”, [Online

document], , [cited 2010 May 18], Available: http://websphinx.sourceforge.net/

[31] B.Bruegge and A.H Dutoit, Object-Oriented Software Engineering: Using UML,

Patterns and Java, 2nd ed . United States of America: Pearson Education ,2004,pp.

125, 435-438,440,452,453,459,463,469

[32] Mr. Alfredo Cappariello, the cloud computing software engineer from IBM

Innovation Centre in Dublin,”IBM Training “. [.ppt]. Qatar University – IBM

Training , 2009

[33] ”Java Programming Language,” [Online document], 2010 May,[cited 2010 May

21], Available: http://en.wikipedia.org/wiki/Java_(programming_language)

[34] “JDK”,[Online document],2001 June,[cited 2010 May 21],

Available:http://isp.webopedia.com/TERM/J/JDK.html

[35] “Cygwin”,[Online document], 2003 Sep, [cited 2010 May 21],

Available:http://searchenterpriselinux.techtarget.com/sDefinition/0,,sid39_gci922130,

00.html [36]

[37] Cloud Standards Effort Cloud Turn into a Dustup,” [Online document] , 30 April

2009 at 8:18, [cited:2010 may 21], Available

:http://blogs.wsj.com/digits/2009/04/30/cloud-standards-effort-could-turn-into-a-

dustup/

[38] ”DMTF Open Cloud Standards Incubator ,” [Online document] , 2010,

[cited:2010 may 21], Available http://www.dmtf.org/about/cloud-incubator

 [39] ”Cloud standards overview ,” [Online document] , 17 May 2010 at 14:09 ,

[cited:2010 may 21], Available: http://cloud-

standards.org/wiki/index.php?title=Cloud_standards_overview

[40] ”Eclipse (software),” [Online document] , 12 May 2010 at 18:28, [cited:2010

may 21], Available :http://en.wikipedia.org/wiki/Eclipse_(software)

[41] ”Class JobConf,” [Online document] , 2009, [cited:2010 may 08],

Available:http://Hadoop.apache.org/common/docs/current/api/org/apache/Hadoop/ma

pred/JobConf.html#setNumMapTasks(int)

[42] R.Lafore, Data Structures & Algorithms in JAVA, 2
nd

 ed . United States of

America: Sams Publishing ,2003,pp. 212-213

http://crawler.archive.org/
http://www.ics.uci.edu/~djp3/classes/2009_01_02_INF141/Lectures/Discussion02.pdf
http://sourceforge.net/projects/websphinx/
http://websphinx.sourceforge.net/
http://en.wikipedia.org/wiki/Java_(programming_language)
http://isp.webopedia.com/TERM/J/JDK.html
http://searchenterpriselinux.techtarget.com/sDefinition/0,,sid39_gci922130,00.html
http://searchenterpriselinux.techtarget.com/sDefinition/0,,sid39_gci922130,00.html
http://blogs.wsj.com/digits/2009/04/30/cloud-standards-effort-could-turn-into-a-dustup/
http://blogs.wsj.com/digits/2009/04/30/cloud-standards-effort-could-turn-into-a-dustup/
http://www.dmtf.org/about/cloud-incubator
http://cloud-standards.org/wiki/index.php?title=Cloud_standards_overview
http://cloud-standards.org/wiki/index.php?title=Cloud_standards_overview
http://en.wikipedia.org/wiki/Eclipse_(software)
http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/mapred/JobConf.html#setNumMapTasks(int)
http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/mapred/JobConf.html#setNumMapTasks(int)

75

[43] ”Hash Table,” [Online document] , 10 May 2010 at 10:21, [cited:2010 may 23],

Available: http://en.wikipedia.org/wiki/Hash_table

http://en.wikipedia.org/wiki/Hash_table

APPENDIX A

A2

Installation and Deployment Guide

This manual gives you a good idea about how to install and use the whole system.

Many preparing steps should be done before running the code.

Prerequisites
1. You have to have an account on the cloud. This account could be a customer

account or a an administrator/customer account.

2. Enter to the cloud interface using the user name and password given by the

cloud administrator (See figure A.1).

Figure A.1: Login to the Cloud Interface

Figure A.2: Example of an Available Project in the Cloud Interface

A3

Figure A.3: Available Project Recourses in the Cloud

3. If you have an administrator customer account, you can then request a new

project with the needed number of VMs and it should be custom hadoop, see

figures below (figure A.4, A.5, A.6)as an example of creating a project on the

cloud. Then the cloud administrator should approve the project.

 Figure A.4: Create a New Project (step 1)

Figure A.5: Create a New Project (step 2)

A4

Figure A.6: Create a New Project (step 3)

4. I f you do not have a customer account, you need to contact your cloud

administrator to create a new project.

5. At this point , the user should have a list of VMs each with an IP address that

can be subtracted from figure A.3. The user needs to initiate those VMs in the

host file found in C:\WINDOWS\system32\drivers\etc directory. (Figure A.7)

VM IP address VM name

Figure A.7: Host file Sample

6. The user now needs to copy the hadoop directory of the cloud in his machine ,

then he needs to paste them in a known directory. After that, he needs to copy

this file in the eclipse plugins.

7. The user needs then to set the environment variable as follows (Figure A.8):

A5

Figure A.8: Environment Variables

8. Next, the user needs to set up hadoop locations in Eclipse. For this step you

can follow the website http://v-lad.org/Tutorials/Hadoop/17%20-

%20set%20up%20hadoop%20location%20in%20the%20eclipse.html from 1

till 7. Note: in the steps, instead of putting the localhost, put the IP address of

the namenode (last VM in the cloud interface Figure A.3 has namenode

10.160.2.16 for example). Another point to be changed is replace the

Map/Reduce Master port number for 9101 to 9001 and DFS Master from 9100

to 9000.

9. The needed following steps are well demonstrated in the following link:

http://v-lad.org/Tutorials/Hadoop/23%20-%20create%20the%20project.html :

step 13 “create and run a test project” starting from step 1 till step 3.

10. After creating the MapReduce project, the user needs to copy the src directory

provided in the CD to his project src directory.

11. The user then needs to change the input and output files in the HDFS as he

wants and then run the LindeIndexer.java class provided in the CD. The code

should run as a MapReduce project on the configured Hadoop location (As

figure A.9 shows).

http://v-lad.org/Tutorials/Hadoop/17%20-%20set%20up%20hadoop%20location%20in%20the%20eclipse.html
http://v-lad.org/Tutorials/Hadoop/17%20-%20set%20up%20hadoop%20location%20in%20the%20eclipse.html
http://v-lad.org/Tutorials/Hadoop/23%20-%20create%20the%20project.html

A6

Figure A.9: Run the LineIndexer code on hadoop location.

12. If all the steps are followed as mentioned previously, the LineIndexer code

should terminate successfully and the output file will be created in the HDFS

location as the user specified the output path.

13. The next step is to upload the output file to the user local machine.

14. Then, the user needs to run the CovertTextToHash.java class and change the

input path to be the directory of the output file from LineIndexer code.

15. The output from the previous step will produce a .ser file. To continue the

steps till the end you can refer to User Manual in Appendix B.

APPENDIX B

B2

User’s Manual

Guidelines for using the search interface

In this ReadMe file, you will be able to know how to use the attached Ouput.ser and

Searching.jar files , so you can use the search interface designed for the project: Data Analysis

Using MapReduce Programming Model on the Cloud.

Before using the interface, you have to follow the next instructions:

1.Save the Output.ser file in directory C:/

2.Save Searching.jar in any directory you prefer.

3.Open the command prompt, and change the directory to the one where you saved Searching.jar

4. To make sure that you are in the correct directory and path, use the command dir, and as

shown in figureb.1, you can see that it is the needed path where Searching.jar is found.

Figureb.1:dir command is used to see what is in the current directory

5.To open the runable Search.jar file use the following command: java –jar Searching.jar (shown

in figureb.2).

B3

FigureB.2: use java –jar file.jar command

6. As a result for step 5, the interface will be opened to you, and now you can search for any

word you want.

Way of using the interface itself:

1. You just have to enter the needed word that you are looking for in the field shown in red circle

in figure b.3.

FigureB.3:field to enter the needed word to search for

B4

2.Press on the button Search.

If the word exists, you will get the result that shows a list of ten names of files or less, where the

word has most frequency, and the frequency is attached to the name of file as shown in figureb.4.

And if the word doesn’t exist, “the word does not exist in the files” sentence is printed (Figure

B.5).

Figure B.4: Example of an output for available word in the files

Figure B.5:Example of an output for unavailable word in the files

B5

For any questions, contact us using the following e-mails:

 200657271@qu.edu.qa

200652758@qu.edu.qa

 200653782@qu.edu.qa

mailto:200657271@qu.edu.qa
mailto:200652758@qu.edu.qa
mailto:200653@qu.edu.qa

APPENDIX C

__

C2

 Graphical User Interface
In this appendix you can see some snapshots for the designed interface:

C3

APPENDIX D

__

D2

Source Codes

1. ConvertTextToHashTable.java

D3

2. Generate.java

D4

D5

3. LineIndexer.java

D6

D7

4. Link.java

5. Link1.java

D8

6. SearchHash.java

D9

D10

7. SearchInterface.java

D11

D12

8. SortedList.java

D13

D14

D15

9. UnusedList.java

D16

D17

APPENDIX E

__

E2

Block 3 in Generate-Part 2 Flowchart

Figure E.1:Block 1 in Generate-Part 2 Flowchart

Buy SmartDraw!- purchased copies print this

document without a watermark .

Visit www.smartdraw.com or call 1-800-768-3729.

E3

Figure E.2: Block 2 in Generate-Part 2 Flowchart

Buy SmartDraw!- purchased copies print this

document without a watermark .

Visit www.smartdraw.com or call 1-800-768-3729.

E4

Figure E.3: Block 3 in Generate-Part 2 Flowchart

Buy SmartDraw!- purchased copies print this

document without a watermark .

Visit www.smartdraw.com or call 1-800-768-3729.

APPENDIX F

MEETINGS AND BULLETIN BOARD

F2

Meeting no.1:
Tuesday 6

th
 .October.09 – (09:00-10:00 am)

 Items discussed:
o The idea of the project
o The main tasks for the project.
o General idea about the data mining and map reduce.
o Working on the Cloud in Carnegie Mellon

 Tasks agreed for next meeting:

Task For

 Write the UREP project proposal

 Searching and reading about the data mining and map reduce

o Techniques, algorithms and applications

Amira

Farah

Nadia

 Attendance (Students):

Amira- Farah- Nadia

 Others
o Dr. Malluhi sent an email to QP to have the permission to get the data and

to arrange meeting with them.
o Hardware of the cloud was ordered to be instal1ed in Qatar university

(QU).

F3

Meeting no.2
Tuesday 13

th
 .October.09 – (09:00-10:00 am)

 Items discussed:
o Downloading SSH program to login into the cloud (PUTTY)

 Tasks completed:

Task For

 Reading many articles and power point presentation about data mining

and map reduce and made some notes.

 Filing the project proposal template (not complete)

Amira

Farah

Nadia

 Tasks agreed for next meeting:

Task For

 Logging to the cloud using the accounts and passwords given from

 To be familiar with the cloud and how to run programs on it

 Reading more about the map reduce and data mining

Amira

Farah

Nadia

 Attendance (Students):

Amira- Farah- Nadia

 Others
o User names, passwords and login instructions has been sent to the students

emails.

F4

Meeting no.3:
Wednesday 28

th
 .October.09 – (2:00-2:30 pm)

 Items discussed:
o project proposal

o Running the browser in the cloud

o Map reduce environment.

 Tasks completed:

Task For

 Logging to the cloud using the accounts and passwords.

 Filing the project proposal template.

 Some reading about map reduce and data mining

Amira

Farah

Nadia

 Tasks agreed for next meeting:

Task For

 Run a map reduce example, then try to modify it and run it again

 To be familiar with the WEKA software

Amira

Farah

Nadia

 Attendance (Students):

Amira- Farah- Nadia

 Others
o Drop box is used to upload the needed files for the project easily.

F5

Meeting no.4:
Tue 3rd .November.09 – (09:00-10:00 am)

 Items discussed:
o The meetings IBM.

o Problems in running a java program importing a Hadoop or weka

packages

o Proposal of the project is completed and submitted.

 Tasks completed:

Task For

 Exploring WEKA software

 Finding many MapReduce examples

Amira

Farah

Nadia

 Tasks agreed for next meeting:

Task For

 Contacting with Mr.Shuja to access the ssh in the QU campus

 Contacting with CMUQ to use the URL

 Installing the Hadoop package

 Run a map reduce example, then try to modify it and run it again

 To be familiar with the WEKA software

Amira

Farah

Nadia

 Attendance (Students):

Amira- Farah- Nadia

 Others
o We contact Dr. AbdulKarim Errdai to have a help with Hadoop.

F6

Meeting no.5:
Tuesday 17

th
 .November.09 – (09:00-10:00 am)

 Items discussed:
o Qatar Qloud Hardware (installation on 6

th
 -7

th
, Dec.[09

o Training and tutorial on 8
th

-9
th

-10
th

 ,Dec.2009

o Meeting with Dr. AbdulKarim Errdai and some useful information

o Contacting QP and the preparation of some presentations.

o Plan “B”: if no data is available from QP, an indexing procedure may be

discussed as a plan “B”

o Many Problems in installing the Hadoop package and interacting with

eclipse

 Tasks completed:

Task For

 Contacting with Mr.Shuja to access the ssh in the QU campus

 Contacting with CMUQ to use the URL

 Installing the Hadoop package

 Trying to run a MapReduce example

Amira

Farah

Nadia

 Tasks agreed for next meeting:

Task For

 Complete installing the Hadoop package and run the examples included

in the package.

Amira

Farah

Nadia

 Attendance (Students):
Amira- Farah- Nadia

F7

Meeting no.6:
Tuesday 24

th
 .November.09 – (09:00-10:00 am)

 Items discussed:
o Contacting QP and some meetings.

o Many Problems in installing the Hadoop package and interacting with

eclipse

 Tasks completed:

Task For

 Installing the Hadoop but with many problems such as how to connect

our virtual machine with our real machine, and this solved by using the

ssh (Tunnelier)

Amira

Farah

Nadia

 Tasks agreed for next meeting:

Task For

 Complete installing the Hadoop package, solving the remained problems

with Mr.Brian Geek(CMUQ) and run the examples included in the

package.

Amira

Farah

Nadia

 Attendance (Students):

Amira- Farah- Nadia

 Others:

The meeting with Mr.Brian is arranged to be on Tue. 24
th

 ,Nov.2009 at 12:00pm in

CMUQ compus .

F8

Meeting no.7:
Tuesday 8

th
 .December.09 – (09:00-10:00 am)

 Items discussed: (should be modified)
o Discuss some points regarding the first senior project report such as the

problem statement, the goals and main objectives, the project scope.

o Take the decision that QGPS data from QP will not be used and another

data sourse should be found.

o Plan B: Getting Data from Other Resource (e.g.: United Nation

Documents)

 Tasks completed:

Task For

 Finishing installing the local Hadoop.

 Visit Mr.Brian Geek(CMUQ) and access Hadoop of CMU cloud.

Amira

Farah

Nadia

 Tasks agreed for next meeting:

Task For

 Look and search for other data recourses: United Nations.

 Solve the Eclipse plug-ins problem of MapReduce on the Eclipse

environment.

 Start Documentation of the project.

Amira

Farah

Nadia

 Attendance (Students):

 Amira- Farah- Nadia

F9

Meeting no.8:
Tuesday 13

th
 .Decembre.09 – (09:00-10:00 am)

 Items discussed: (should be modified)
o Discuss some points regarding the first senior project report.

 Tasks completed:

Task For

 Completed some documentation of the project such as the cloud and

Hadoop literature.

Amira

Farah

Nadia

 Tasks agreed for next meeting:

Task For

 Continue Documentation of the project.

 Attend the IBM training which will be scheduled on the 15
th

 of

December.

Amira

Farah

Nadia

 Attendance (Students):

 Amira- Farah

F10

Meeting no.9:
Sunday 21

st
 .February.10 – (11:00-12:00 am)

 Items discussed:
o The accounts status in the QU cloud and the VPN configuration.

o Setting up the meeting time for this semester.

o Discussing some issues regarding the indexing concept.

o How to gather 1 TB of data: the suggested solusion was a crawler

program.

o The WordCount code :discuss some problems in the code and how to run

it on the QU cloud.

 Tasks completed:

Task For

 Decided to work on the indexing example for MapReduce.

 Attended some lectures in the CMU university for the course

“Introduction to Cloud Computing” presented by Dr.Majd F.Sakr.

Amira

Farah

Nadia

 Tasks agreed for next meeting:

Task For

 Contact Mr. Shuja Ashfaq for setting the VPN to connect to the cloud

outside the campus.

 Contact Mr. Zeyad Ali to see the accounts status in the QU cloud.

 Fix the problems in the WordCount code and run it without the use of the

QU cloud.

 Start reading about the indexing algorithms, find some examples and

understand and try to run them.

 Understand the crawler java code and run it correctly to start gathering

the needed amount of data.

Amira

Farah

Nadia

 Attendance (Students):
Amira- Farah- Nadia

 Others:
Contact Dr.ElSayed to get a help with the Crawler4j code

F11

Meeting no.10:

Sunday 28
th

 .February.10 – (11:00-12:00 am)

 Items discussed:
o Preparing the senior project computer to run the crawler program on it

o Crawler program is working successfully

o Failed to connect the cloud to run the MapReduce program

o WordCount.java without errors

o Cloud accounts are customer accounts, cannot create projects

o Emailing Mr.Zeyad Ali to create a Hadoop project

 Tasks completed:

Task For

 Crawler program worked successfully.

 Contacted Miss Sara(IT) to prepare the senior project computer to run the

crawler program on it.

 Get customer accounts on cloud

 Found some useful papers about indexing with MapReduce algorithms

Amira

Farah

Nadia

 Tasks agreed for next meeting:

Task For

 Contact Mr. Shuja Ashfaq for setting the VPN to connect to the cloud

outside the campus

 Try again to connect the local Hadoop with eclipse to run the WordCount

example

Amira

Farah

Nadia

 Attendance (Students):
Amira- Farah- Nadia

F12

Meeting no.11:

Sunday 7
th

 .March.10 – (11:00am-12:00 pm)

 Items discussed:
o Buy hard disks of 1T.

o Problems with connecting cloud Hadoop with local eclipse.

 Tasks completed:

Task For

 VPN is working properly.

 Connect local Hadoop with eclipse but with errors.

 Partially connect cloud Hadoop with local eclipse (with errors).

 Started reading some papers about indexing.

Amira

Farah

Nadia

 Tasks agreed for next meeting:

Task For

 Try to solve the password problem faced with connecting eclipse with

cloud Hadoop by starting each node individually.

 Look for more simple and specific published scientific papers about

indexing using MapReduce algorithm. (suggested search engine: Lucene)

Amira

Farah

Nadia

 Attendance (Students):
Amira- Farah- Nadia

F13

Meeting no.12:

Thursday 11
nd

 .March.10 – (08:30-09:00 am)

 Items discussed:
o Problems with connecting cloud Hadoop with local eclipse.

o Difficulties in finding two compatible versions of Hadoop and eclipse

o Suggested solutions in different web sites.

 Tasks completed:

Task For

 Try to solve the problems with the local Hadoop (solved partially)

 Try to connect two different version of Hadoop(0.16.4) and eclipse(3.4)

errors in Java scripts in this version of Hadoop.

Amira

Farah

Nadia

 Tasks agreed for next meeting:

Task For

 Send an e-mail to Mr.Brian to give us the Hadoop folder used in the

CMU with the eclipse used there.

 Request new accounts in the CMU cloud with a project with specific

requirements and also new accounts in the Hadoop server of the CMU

Amira

Farah

Nadia

 Attendance (Students):
Amira- Farah- Nadia

F14

Meeting no.13:

Sunday 14
th

 .March.10 – (11:00am-12:00 pm)

 Items discussed:
o Problems with connecting cloud Hadoop, local Hadoop with local eclipse.

o Inverted Indexing

o Find some problems regarding the local Hadoop installed in our QU cloud.

o A visit to the QU IT people to tell them about what we need for the

Hadoop server, and show them some of the faced problems in the cloud.

 Tasks completed:

Task For

 E-mail was sent to Mr. Brain asking for the Hadoop folder and creating

accounts.

Amira

Farah

Nadia

 Tasks agreed for next meeting:

Task For

 Read about inverted indexing, and try to find codes for doing this

 Read about some MapReduce examples that implements the indexing.

 Read about tokenization.

 Order a useful book about MapReduce or Hadoop.

Amira

Farah

Nadia

 Attendance (Students):
Amira- Farah- Nadia

F15

Meeting no.14:

Sunday 21
st
 .March.10 – (11:00am-12:00 pm)

 Items discussed:
o Details in the code (tokenization and delimiters)

o The visit to CMU and the help from Mr.Suheel

o The algorithm of the inverted index

 Tasks completed:

Task For

 Read about inverted indexing, and a good code from yahoo was found

 Read about some MapReduce examples that implements the indexing.

 Read about tokenization.

 A useful book about MapReduce or Hadoop is bought.

Amira

Farah

Nadia

 Tasks agreed for next meeting:

Task For

 Get the right directories (Hadoop-0.20.1 and eclipse from Mr. Brian from

CMU)

 Work on enhancing the indexing code to meet some specifications.

Amira

Farah

Nadia

 Attendance (Students):
Amira- Farah- Nadia

F16

Meeting no.15:

Sunday 28
th

 .March.10 – (11:00am-12:00 pm)

 Items discussed:
o Trying to run codes on separate clusters

o Searching about generating random text files.

o Running the crawler on the cloud

o QU cloud is not sattled yet and our project is deleted.

o Discussing some topics about the meeting with Dr.Erradi.

 Tasks completed:

Task For

 Got the right directories (Hadoop-0.20.1 and eclipse from Mr. Brian from

CMU)

 Gave the directories to the IT team to be configured on the cloud

Amira

Farah

Nadia

 Tasks agreed for next meeting:

Task For

 Make some design decisions about the application and its interface

 Generate random text files

 Complete the not completed tasks from the previous meeting

Amira

Farah

Nadia

 Attendance (Students):
Amira- Farah- Nadia

F17

Meeting no.16:

Sunday 4
th

 .April.10 – (11:00am-12:00 pm)

 Items discussed:
o Discuss the QU cloud status (problem solved and wait for Dr. Qutaiba to

contact the IT group).

o Take the data from Al-Jazira Networks.

o Discuss the indexing application with the use of search (simple) and

determining the frequency for each word in each file.

o Starting to work on the final report.

 Tasks completed:

Task For

 Ran the crawler on the cloud by making the whole project as a runnable

jar file(slow not that efficient)

Amira

Farah

Nadia

 Tasks agreed for next meeting:

Task For

 Choose the final idea (path) of the application if it is going to be an

analysis improvement or application based.

 Look for algorithms related to security that can be implemented in

embarrassingly parallel way and easy to get then, test them (try to talk

and discuss the idea with Dr. Ryan Riley).

 Check cloud connectivity using the ping command.

 Think of finding another data source (by data from the net).

 Start working on the final report for the senior project.

Amira

Farah

Nadia

 Attendance (Students):
Amira- Farah- Nadia

F18

Meeting no.17:

Sunday 18
th

 –Thursday 22
nd

 .April.10 – (11:00am-12:00 pm)

 Items discussed:
o How to deal with a tokenizer, and skip the delimiters.

o The structure of the output files from the map and reduce methods, hash

tables are suggested.

o How to find the frequency of a token in one file.

 Find this frequency in the map method, because in the map function

each file is processed alone.

o Discuss the interface of the project:

 Using web Interface.

 Let the user to choose the parameters of the MapReduce function, the

input, output paths.

o Discuss the problems faced with the crawler.

o A visit to the QU IT team to follow up with them about the condition of

the cloud, and to test if we can use it depending on their work.(The CMU

cloud accounts will be terminated on 20
th

 April, 2010).

 Tasks completed:

Task For

 Finalize our idea (path) of the project to an application based.

 Fix some problems in the crawler by understanding some things about

the staring path of search and know how to deal with it.

 Run the crawler code from the cloud, and save the output in the cloud (

the connection using the CMU cloud was slow).

 Start working on the final report for the senior project, and find out what

is missing from the report.

Amira

Farah

Nadia

F19

 Tasks agreed for next meeting:

Task For

 Apply the discussed method for the delimiters on the indexing code.

 Read about hashing tables, and how to save .txt file into hashed table.

 Find out how to get the frequency of the token in each file.

 Visit to the QU IT people to follow up with them about the condition of

the cloud.

Amira

Farah

Nadia

 Attendance (Students):
Amira- Farah- Nadia

F20

Meeting no.18:

Sunday 25
th

 .April.10 – (11:00am-12:00 pm)

 Items discussed:
o Problems in the crawler

o Problem in creating the sorted list in the code.

o Other problems in the code.

 Tasks completed:

Task For

 The discussed method for the delimiters on the indexing code was

applied and it worked.

 Read about hashing tables, and how to save .txt file into hashed table.

 The visit to the IT was useful and the cloud finally is ready.

Amira

Farah

Nadia

 Tasks agreed for next meeting:

Task For

 Work on the crawler to solve its problem

 Continue working in the coding part

 Start working on the final report

Amira

Farah

Nadia

 Attendance (Students):
Amira- Nadia

F21

Meeting no.19:

Sunday 2
nd

 .May.2010 – (11:00am-12:00 pm)

o Items discussed:
o Getting data from the united nations website instead of the crawler because

it is very slow

o Coding:

 Making the unused list in a configuration file not in the code itself.

 Comparing Strings in Java.

 The output of the map has only 2 variables, we need more..so we

would create new class , the object of this class has 2 variables

frequency and file name

 Tasks completed:

Task For

 Editing the report and completing

 Looking for another source of data (buy or another crawler)

 Working on the code .. still working and debugging

Amira

Farah

Nadia

 Tasks agreed for next meeting:

Task For

 Collect data manually

 Continue working on the code

Amira

Farah

Nadia

 Attendance (Students):
Amira- Farah- Nadia

F22

Meeting no.20:

Sunday 9
th

 .May.2010 – (11:00am-12:20 pm)

o Items discussed:

 The mapper is working probably

 Search on a hash tables is working

 Hash tables in the reduce is not working

 The interface options (Web application or GUI component)

 Tasks completed:

Task For

 Collecting data manually(very very slow and inefficient)

 A fast B plane : make a list of about 160 URLs to feed the crawler

 Deeper look to the configuration for the MapReduce programs

 Parts of the code

- Mapper

- Searching in Hash Tables

- Listing files according to the frequency

Amira

Farah

Nadia

 Tasks agreed for next meeting:

Task For

 Modify the crawler to get URLs from a file and run it

 Complete the reduce part of the code

 Make the interface as simple as possible

Amira

Farah

Nadia

 Attendance (Students):
Amira- Farah- Nadia

F23

Meeting no.21

Sunday 16
th

 .May.2010 – (11:00am-12:20 pm)

o Items discussed:

 Gathering data using generating files.

 The codes of Indexing MapReduce Algorithm, converting .txt output

to Hash tables then to .ser files, searching code and the designed

interface.

 The number of mappers and reducers tasks in the LineIndexer code.

 Discussion of the report most important points.

 Tasks completed:

Task For

 The crawler was modified. But we end with a result that it is not

effective.

 Reduce part of the coded is completed.

 User Interface for searching is designed.

Amira

Farah

Nadia

 Tasks agreed for next meeting:

Task For

 Write the code of generating files.

 Generate files of total size of 0.5 TB.

 Write the documentation of the Project

Amira

Farah

Nadia

 Attendance (Students):

Amira- Farah- Nadia

F24

Meeting no.22

Sunday 23
th

 .May.2010 – (9:00am-10:00 pm)

o Items discussed:

 The unstable state of Qatar University cloud.

 Performance testing plan.

 Creating accounts on the CMU-Qatar again, so we could test our

codes.

 Tasks completed:

Task For

 Generation files code is done, and data is gathered.

 Number of chapters are written in the final report

 Reduce part of the coded is completed.

 User Interface for searching is designed.

Amira

Farah

Nadia

 Tasks agreed for next meeting:

Task For

 Finalize the project documentation.

 Try to test the performance after the submitting the report.

Amira

Farah

Nadia

 Attendance (Students):

Amira- Farah- Nadia

