Data Analysis Using MapReduce Programming Model on the Cloud

Final Senior Project Report Submitted to
The Department of Computer Science and Engineering
Faculty of Engineering

Qatar University

In Partial Fulfillment of the Requirements for the Degree of
Bachelors of Engineering in

Computer Engineering

By
Amira Salah Eddine Ghenai (200657271)
Farah AbdulMutaleb EI-Qawasmi (200652758)
Nadia Rashid Al-Okka (200653782)
Spring 2010

©Copyright by Amira Ghenai, Farah EI-Qawasmi, Nadia Al-Okka, 2010

DEDICATION

This work is dedicated to my parents who has been the wind beneath my wings until | completed
this work. A big thank you to my sister, brother and aunt , words are never enough to express
how much you have done for me. To my brilliant team mates who occupy a special place in my
heart. To all my friends for their patience, humor and advice. To my beloved country ,
university and last but not least, special thanks to all my respected professors.

Amira

This work is dedicated to my parents, brothers, and sister for their continues love , and for
making me the person | am today. To my gorgeous team mates, my best friends in Doha and
Gaza and to all my respected professors for their support and help.

Farah

This work is dedicated to my parents, for their continuous love, patience and support, for my
lovely brothers for their help and support in every step, to my sisters for their love and care, to
my best friend for being always around, to my nice and lovely team mates, to my all special
friends, to all my wonderful professors for their never-ending support and to my great university
for everything that it gave me.

Nadia

DECLARATION

This report has not been submitted for any other degree at this or any other University. It is
solely the work of us except where cited in the text or the Acknowledgements page. It describes
work carried out by us for the project described in the submitted senior Project Proposal which in
available in the appendices of this report. We are aware of the penalties for plagiarism
fabrications and unacknowledged syndication and declare that this report is free of these.

Farah El-Qawasmi signature

Amira Ghenai signature

Nadia Al-Okka signature
Signed on

June. 10" .2010

ACKNOWLEDGEMENTS

First of all, we would like to thank Almighty GOD for giving us the strength to sustain all the
stress and study pressure during our last senior year. Our sincere gratitude to the supervisor of
this project Prof. Qutaibah Malluhi, for his guidance, help and motivation that helped us through
the course of our journey towards producing this thesis. Apart from the subject of the project, We
learnt a lot from him, which will be surely useful in different stages of our lives.

We wish to extend our heartfelt gratitude to all our Qatar University professors and instructors
and especially to Dr. Sayed ElSayed, Dr. Abdelkarim Erradi, Dr. Ryan Riley and Mr. Zeyad Ali
whose encouragement, guidance and support from the initial to the final level enabled us to
develop an understanding in different aspects of the project.

We take this opportunity to convey our sincere thanks to Dr. Osama Shata, the Senior Project
Coordinator, for guiding us during the two semesters and helping us in submitting the project in
an organized, well presented and professional manner.

We would like also to thank the IT team of Qatar University: Mr. Sajeer Thavot, Mr. Ali Zahid
and Mr. Shuja Ashfaq, for their assistance, criticisms and useful insights in debugging and
solving encountered QU cloud issues.

Furthermore, our deepest appreciation to Mr. Alfredo Cappariello, the cloud computing software
engineer from IBM Innovation Centre in Dublin, for his never-ending technical support
regarding cloud concerns during the whole project.

In addition to that, we would like to thank Qatar National Research Fund (QNRF) for funding
the project’.

Lastly, we offer our heartiest regards and thanks to the Carnegie Mellon University staff for their
help and great support and especially to Dr. Majd Sakr, Mr. Brian Gallew, previous system
administrator, and Eng. Suhail Rehman.

We offer our deepest regards and blessings to all of those who supported us in any respect during
the completion of the project.

! This publication was made possible by a grant from Qatar National Research Fund under its Undergraduate
Research Experience Program. Its contents are solely the responsibility of the authors and do not necessarily
represent the official views of Qatar National Research Fund.

ABSTRACT

Cloud computing is an emerging paradigm of computing where virtualized information
technology resources are dynamically provided as a scalable on-demand service delivered over
Internet technologies. Qatar University (QU) has partnered with IBM, Carnegie Mellon
University in Qatar (CMU-Q), and Texas A&M University at Qatar (TAMUQ) on an initiative
that brings the first could computing system to the Middle East. This initiative leverages the IBM
Blue Cloud solutions to provide a cloud infrastructure (called QLoud) that is open for local
businesses and industries to implement and test relevant applications

In our project, this new computing model was leveraged to solve a real problem that is relevant
to the education and research fields in Qatar. We took advantage of Qatar University cloud and
we focused on analyzing a large data set.

Considering the limited scope of the project, the project focused on designing and implementing
only one useful problem, which is indexing. Data indexing was processed efficiently by
employing the MapReduce programming model on a large virtual cluster provisioned on the
Qatar University cloud infrastructure. MapReduce enables fast distributed processing of results
by employing two steps. The "Map" step divides the gigantic data into smaller chunks and
distributes these chunks over a large number of worker nodes. Each worker node does processing
on its chunk and passes the result to a master node. The master node performs the “Reduce” step
by combining the pieces of results into a final answer. In our case, the MapReduce indexing
MapReduce algorithm produces textual files, which are processed and used in a search
application. A simple user friendly interface is designed to demonstrate this concept.

This project showed the effectiveness of the cloud computing model in improving search
applications using the MapReduce indexing algorithm. In addition to that, MapReduce
programming model has proven to be a powerful, clean abstraction for programmers. For all
those reasons, the cloud technology can be used effectively for further research at QU. However,
our experience in this project has demonstrated that this technology, in its current state, is not as
easy and as seamless as it is advertised.

Furthermore, the project promotes collaboration between Qatar University, CMU-Q, IBM and
other universities in Qatar. It has provided a unique educational experience for us by allowing us
to interact with other institutions, and learn about an emerging leading-edge technology.

TABLE OF CONTENTS

TITLE PAGE ...ttt ettt e e e e et s e e e e et s e e e eat s e e eeanneeeenrn s e e eernneeennnnneanes |
[=1 [0 ANy I 1 PR 1l
DECLARATION ...ttt ettt e et e e s s e e eae s e s e ena s e s e ena s e s e esn s e e e ann s e nennnnenennnn i
ACNOWLEDGEMENT ...ttt e e e e e e et aeaeees v
Y 2 1 I ¥ X G PP \Y
TABLE OF CONTENTS ...eeiiiiieeii e et e e ee e s e e s s e s eren s e s e e e s e e e s ernn e e s ernnn s VI
ABBREVIATIONS ..ottt e et et e et e e be e e te e ebeeebeeanteeanteeateeanreas X
LIST OF FIGURES ettt et e e e e e e e s e e e e e e e e e e e e e e rna e X
L ST OF TABLES .. et e e e e e e e e e et e e e aeans Xl
CHAPTER 1 :INTRODUCTION ...ttt e s s s st s s e e e e et s aneaaenas 1
1.1 INTRODUCTION ..tueutnenensenssnsensansensansenssnssnssnsansanssnssnssnsanssnssnssnssnsessnsessensensenmessnnnes 2
I @ A =1 | PP 2
1.3 PROBLEM STATEMENT ttutitutiansiunsenssenssnsssssssnsetnsstssssensssnssssssassesssensssnsesn et seinseinsenssenns 3
1.3.1 Critical and Important Aspects of the Problemccoovvvvvveviviiiiiiisiiisiiisiviiiiinnnns 3

1.3.2 The Targeted ENVIFONMENTvvvnireirseissesiesisats st e sie i esssseaasaassasssasisssasssassassnens 5

1.4 GOAL AND MAIN OBIECTIVES . tuuivuniensienssnsisneinstinsssssnsisnsissssssesssnissnsssnssiseseisssnssnn 5
LD S OPE . ..ttt O
CHAPTER 2: FEASIBILITY STUDY & REVIEW OF RELATED LITERATUREccvuvvvvrvnnnnnn. 7
2.1 INTRODUCTION .etuituuetuesueenreensennannaenssensesssenssenseensesnsesnseseensannssensrensesnsensmenseensennrennres 8
2.2 CLOUD COMPUTING «1etueruennaetnaennsensenssensenssesssenseensennsesnsesnsmnnennssensrensesnmensmenmeensennrennnes 8
2.2.1 Cloud ComPULING CONCEPL ...evreeeeerrseeenn e eees e eee e et e e e e e e e e e e e e e e eennaneees 8

2.2.2 Cloud CompULING HISLOIYcereneeeen oottt e e e 9

2.2.3 Cloud Computing AQVANTAGE ... eeeereneeeerieeeens e e e e e e e e e e saneeeennaeaeenns 10

W A O [10 To I Y o PPN 11

2.2.5 High-1evel ArChiteCtUIec.vveeeeivse ittt et tiaatiassaansas 12

2 B 1 5 1 N 13
RGN o = Vo (oo o B o 1151 (o o VAP PPPOPPPI 13

PRSIV o F= Yo [oTo] o B 1 {101 (o] o PPN 14

RSB o)V o F=To [oToT o J TSRV ISt PP 14

2.3.4 HDFS AFCNItECIUIE cvvvvvsievsi st ettt ettt ettt tes ettt e st e s tsesassnassssasssanes 14

Y (=1 1o =S PP 15
2.4.1 MApPREAUCE OVEIVIEWeeeerrieeeeni e e eenseeees s e e eesaeeeensaeeeesaneaeenaneeeennneeeenaans 15

2.4.2 MapReduce Programming Modeloovvermmiriireneeeee e 16

2.4.3 MapReduce AlGOTItRMSccoreeieeer e 17

2.4.4 Indexing USING MapPREUUCEeeerieeeenie e e et e e e e e e aeeeennns 18

2.5 PREVIOUS WORK ON CLOUD ...ttuiituietnaenaensienssssssssenssensssnsssnsssasssasssnssnssnssensssnssnnsensens 18

P S O8N = PN 19
2.6.1 Web Crawler Definitionoovueeiiiii e 19

2.6.2 Why Web Crawlers are USEdcceuorruiriieceieeiir e e e 19

2.6.3 HOw Web Crawlers WOrK.........coouu ettt eeis 19

2.6.4 0pen SOUrCe WED CraWlerS i eeerieeeere ettt ernn e e 19
CHAPTER 3: REQUIREMENT ANALYSIS ..o e e 21
K T8/ [N T 018 [i T P 22
3.2 SYSTEM SPECIFICATION ..ttetuseeeterunaeerernseeeesnseseesaseseennaessennseeresnsseerernnseerennnseerennnnees 22
3.2.1 FUNCLIONAl REQUITEMENES ...vvvssriaersisssieisiessisessssssssasssasstsassssassssssssssssnasssaans 22

3.2.2 Non-FuNnctional REQUITEMENTS.uurrreerseserrisessisesssssssissssisassissssssssssissssissssisasssnies 23

Vi

3.3 HARDWARE AND SOFTWARE RESOURCES ...uuivuiissiissiinsinissnsssssrssississnssnsssnsssnssanssnssens 23

3.3.1 Hardware REQUITEMENTScvuvrrruresisrsiassiessiessssssssassisassssassssssssssssssssisasssiies 23

3.3.2 SOftWare REQUITEMENTS ..evvuvsessssasesisesisessise st ettt e tsesastis e st asssaasasisassisassssasssanes 25

3.4 THE CONCEPTUAL IMODEL 1 ututuiuiuiutnitinistssssssssssssssssstststsisisisisisieisiensasssiessseisesins 26
3.5 PROPOSED SOLUTIONS 11ttt tutusutusnsssntssssssssssssssssssssssstsrstsisieiemssieseiemenseseseeeemrmmns 28
3.5.1 Utilization of Design Related Standards and Recognition of Professional Design Codes . 28

3.6 HARDWARE AND SOFTWARE DESIGN METHODOLOGY ..vuvtarereierieieeieneeiensssnsnsnsnsnsnsrssssssinns 29
3.6.1 Hardware Design Methodology......c.c.vvvvereriiriminiiiiniiieiiis e 29

3.6.2 Software Design MethodOlOgYccceuvvrrmiriiriminiicinoie i 29

3.7 DESIGN GOALS INFLUENCED BY SYSTEM SPECIFICATIONS AND REALISTIC CONSTRAINTS......... 31
3.8 EVALUATION OF THE EFFECT OF DESIGN CHOICES .1vvuiritirnrarenenienrarerenssnrssrensnsenrnrsiensennes 32
3.9 WORK BREAKDOWN STRUCTURE 1.ttt ueuttesssensssenssseensserssarenstmenmreiesrmmne 32
3.9.1 Role Of TEAM MEMDEIS . eucvesiriiis ittt ittt et sttt sttt st astasssssasssassasssassassnnass 34

3.9.2 Interdependence of Individual Role on the Team GoalS...........cccevvvvvvvrvvvrnivisiriiisinnnns 34

.10 PROJECT SCHEDULE 1utututttntneneuensssnrssssssssssasasararsrsrerereremeiereiesemenensteteteseerrrennns 34
CHAPTER 4: IMPLEMENTATION AND DEPLOYMENT ..euiuitiiiiiii et ee e ens e ans 37
4.1 INTRODUGCTION 4 1ututseueuesssssnssssnsessssensssssensrssmmsmsseeremmmmmeesrmr. 38
4,2 L OGIC FLOWCHART S 1 et tttutututtttentsesssssssssssssssssssssessssstsssssssssssssssssssssssrsrsrarererssessssnenenes 39
4.2.1 Generate Data FIOWCNAITcuvveieeeiee ettt ettt teeesstessaaesasns 39

4.2.2 Linelndexer Class FIOWChAITS........uvvvveieieiiieiieeesi ettt teee et eesateessaaasaans 42

4.2.3 Convert Text to Hash Table FIOWCNAITcuvvvevririniiiiieiiieisieeieieeieieeessieasiesaens 45

4.2.4 Search in a Hash Table FIOWChAItcvvvuiviiniuiiisiiiiiiiisiiissisissssiisssisssssssssssininns 46

.25 OtNEE ClASSES 1rvvvivuisissiaisasissssasssassssssssssssssssssssssssssssssssssssssnsssssssssssssssssssssninisns 47

4,3 COMPLETED INTEGRATED SYSTEM DEPLOYMENT ttututututututururnrnrnrnrnrasarnrararararererememmenenens 48
4.4 COMPUTER ENVIRONMENT DEPLOYMENT 11 ututttteenenrnrnrnrnsnsnsnsnsnsasnrnrsrsrsrerereremeimnenens 49
4.5 SOFTWARE INSTALLATION AND USAGE 1.1uttitititietieeersnrnsnsasnsnsnsssnssrsrsrsrersrersreiemnenen 49
CHAPTER 5 :TESTING AND EVALUATION . c. ittt et e es s rsa s eens e eaaans 50
5.1 INTRODUCTION 1tutuentutneusasensssenssseneasseassseaessenssseneasssasseasssensaresensssenssresssensnrenrnsssens 51
D2 TEST PLANNING 41t tttttttttttttentntntttststssssasssasasasasasatststeseesssssessnesenssensssssssrssssssssssnens 51
5.3 GENERATING DATA TESTING 1tututuiuinininininininisistssssststststsisisiessssisssienensstessssesssrsssesnens 51
B UNIT TESTING tututtttuttraenerssssnesssaserasssssssnersrasssesssenersrassemessesererassneessenererarnessrsenernrnnns 52
Lo R I 1T [0 [T g oo L= 52

A= T= 1 o 4] P 41K O Lo [54

5.4.3 SYStEM INTEITACE .. vvvvsieese ittt ettt ettt ettt et st et et e tsatassansas 55

5.5 INTEGRATED TESTING 1 1tuttututtuenenturutnrsrnsnsssnsnsssarsrsssrsrerereieisieiememeneneeneeeeesrreenns 57
D0 SY STEM TESTING .t ututttttentnenenenenenessnsssssssnsnsasasararsrsrererereiessienenenenenesenenesenereterstesenenns 58
5.6.1 PIatfOrm TeSHING ... cceeeeniecei e ittt ettt e e e n e e 58

5.6.2 Performance TESHINGcuuureeeeieeeee e es e et e et e e e een e e a e e ens 59

5.7 SYSTEM EVALUATION WITH RESPECT TO ITS IMPACT ON: 1vutuierenerieninreenssrenssrenessenisesensssens 64
5.7.1 Computing ENVIFONMENTccerinieeeniseecens et e e e a e e 64

5.7.2 ECONOMY @NA SOCIELY ..vvvneeeeiiseeeen e ettt e e n e e e e neeeenans 65
CHAPTER 6 : CONCLUTIONS AND FARTHER WORK .. vuiuitiiiiiiii e ee e eneasanensaneneans 66
Lo = (0] 01U Lo (0] T 67
6.2 IMAIN CONCLUSION 1.1t tttttttsssnsnensnssssssssssssssssssssssrsrsssrerereieiseiememeneneeeteeeeerrenens 67
6.3 CHALLENGES AND ANTICIPATING APPROACH FOR EACH CHALLENGE ...uvuvuiririririririnininiananens 67
6.4 STRENGTHS AND VWV EAKNESS 111t tututututntntntssssssstssssstsrststsrsisreieimsiereiensiseneteeeeeemn 69
6.5 SUGGESTED IMPROVEMENT AND FURTHER WORK .. uivititiiiiiiieieiiiiieieensnsneensnsnsnsnsnsssaeannns 69
L (O o T 72
F AN oo N[] G TP Al
ot N 15 11 G = B1
N 15 1 O C1

vii

APPENDIX D vttt D1
APPENDIX E coiiiii i El
APPENDIX F oo F1

viii

CMU-Q
GFS
HDFS
laaS
OGPS
PaaS
QNRF
QP
QU
SANs
SaaS
SSH
TAMUQ
VPN

ABBREVIATION

Carnegie Mellon University at Qatar
Google File system

Hadoop Data File System
Infrastructure as a Service

Oil and Gas Production Systems
Platform as a Service

Qatar National Research Fund
Qatar Petroleum

Qatar University

Storage Area Networks
Software as a Service

Secure Shell

Texas A&M University at Qatar
Virtual Private Network

Figure 1.1:
Figure 1.2:

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:

Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:

LIST OF FIGURES

CPU Frequency with Respect to Time..........covviiiiiiiiiiiiiii e
CPU LImMitations.oueietitiitt ettt et naeae e

Cloud Computing ConCePL.vvuutitieeteteett et eeeaenans

Virtual Private Network ...
AmMazon Cloud EXPIOTEr ...
Cloud ComMPUting TYPES ...uvniriitit it
Cloud Computing ArchiteCtureooevitiiiiiiiiiii i eieaanan,
HDFS AIChiteCtureooitiiii i e e
MAPREUUCE ... ettt e e
Simple Code of MapReducCecovviiiniiniiii e

System Architecture-Three Tier Architecture Stylecooooeiiinnie.
Blue Cloud 1.6 Network Configuration at QUcceiviiiiiiiinnenn...
Possible Platforms Available in IBM Blue Cloud 1.6cooviviiininnn.
System Conceptual Modelcoooviiiiiiiii i
MapReduce Phase Conceptual Modelcocoiiiiiiiiiiiiiiiiii .

Generate- Part 1 Flowchart
Generate- Part 2 Flowchartcooiiiiiii e,
Mapper FIowchart
Reducer Flowchart ..o e,
Convert Text To Hash Table Flowchartccooviiiiiiiiiiii i,
Search in a Hash Table Flowchart ...,
Completed Integrated Systemcooieiiiiiiiiiiiiii e,

Test PIanningc.oouiiinii i
State Chart Diagram for File Generationcccoviiiiiiiiiiiiinn.
Equivalent flow graph for the Map implementationo.
State Chart Diagram for wordSearch Functionccooiiiini,
Sample of Screen Shot Interfacecoviiiiiiiiiiii e
Sample of the interface that shows not case sensitive input
Output for Unavailable Word inthe Filesocoii
BOMOM-UP test StrateZy ...oneeeieie e e
State of Nodes in the Cloudcooiiiiiiii e

Figure 5.10: Snapshot of the Console for Running a MapReduce Job(1GB- 5 Reducers) ...
Figure 5.11: Reducer Task vs. Time when data inputis1GB...............c.coiviiinn...
Figure 5.12: Reducer Task vs. Time when data inputis5GB...............ccoooeiiiiiinn..
Figure 5.13: Reducer Task vs. Time when data inputis 25GB................ccceoeiiiinnn.n.

Figure 6.1:

The error message in the QU cloud interfacec.ocooiiiiiiiiiiiiian,

LIST OF TABLES

Table 3.1: Gantt Chart Activity

Table 5. 1: Test Cases and Their Corresponding Path for the Map Activity Diagram......

Table 5. 2: Testing Environment for Experiment 1.1
Table 5. 3: Testing Environment for Experiment 2.1
Table 5. 4: Testing Environment for Experiment 2.2
Table 5. 5: Testing Environment for Experiment 2.3

Table 5. 6: Relation between Number of Files and Size of Each Sizeoooina....

Table 5. 7: Testing Environment for Experiment 2.4

34

53
60
60
61
61
61
62

Xi

CHAPTER 1
INTRODUCTION

1.1 Introduction

This chapter is considered as an introduction to the whole project report. In this
section, we discuss the project overview and the fields investigated in the project.
Then, the detailed problem statement is elaborated on by focusing on the most
important aspects of the problem and how it is interpreted and solved. Also the project
targeted environment is explained and the scope of study is described.

1.2 Overview

If we look deeply around us, we will quickly notice that we are living is a
“data age”. The International Data Corporation IDC estimated the total universe
storage to be 0.18 zettabytes in 2006 which let us think of how we are going to
manage this huge amount of data and how are we going to process it. This problem
will affect both individuals and organizations. To solve this issue, combining multiple
hardware units has been proposed. However, two major points needed to be in
consideration: first is to solve the hardware multiple points of failure and second is to
combine the distributed tasks for processing the data. [1]

The above described issue was the main concern in our project. We elaborated
the situation by a combination of different technologies from various fields:

First, the cloud computing concept is motivated by data demands. The infrastructure
of cloud computing can automatically scale up to meet the requests of users by its
virtualization and distributed system technology. In addition to that, it can provide
redundancy and backup features to solve the hardware failure problem. For that, the
cloud computing field is strongly involved in our project. The Qatar University Blue
Cloud is employed to store the project large datasets (0.5 Terabyte is available to be
used for the project purposes).

Second, the cloud is used as a proper distributed system platform to apply a
parallel programming model which is utilized in our project; that is the “MapReduce”
programming model. The MapReduce programming model is a model that solves the
task distribution problem by the computation of the map and reduce methods and the
in-between interface. [1]. In addition to that, MapReduce makes it easier for
programmers to develop parallel processing algorithms and reduces the programming
efforts. In our project a specific MapReduce algorithm is used, which is indexing.

Indexing is a common operation performed in web search engines for three main
purposes: HTML parsing, morphological and language normalized analysis and large-
scale indexing. In our project, this concept in used to build an index from a large set
of documents. Using the MapReduce-generate index makes it much faster to locate an
item in a list of documents. For that purpose, another algorithm is appended and
applied on the indexed file which is searching. The searching algorithm enables the
user to search within the index file for a specific word.

The MapReduce model is implemented in the cloud using the Hadoop
implementation developed by Apache. Hadoop includes a distributed file system,
HDFS and a system for provisioning virtual Hadoop clusters over a large physical
cluster called Hadoop On Demand (HOD). [2]. Implementing the MapReduce model

2

on Hadoop enables one to exploit the massive parallelism provided by the cloud and
provides a simple interface to a very complex and distributed computing
infrastructure.[3].

The proposed project will demonstrate the effectiveness of the cloud
computing model in dealing with large scale data. Our initial plan was serving the oil
and gas industry by analyzing historical databases generated by Oil and Gas
Production Systems. The alternative plan, after the first plan failed, was analyzing
data generate through web crawling. Web crawling is following link pages collected
already to pages that have not been collected yet and getting their files. Good open-
source web crawlers are available and can be used to meet the needs of the project.
The one used in our project to collect data is crawler4j. Although crawler4j was a fast
web crawler, the network connection was not fast enough to meet the project time
constraints and requirements (half terabyte was planned to be gathered). Finally, to
get the project data, file/data generation code was designed and applied.

1.3 Problem Statement

1.3.1 Critical and Important Aspects of the Problem

Dealing with large sets of data was and still is a huge concern that developers
and programmers need to pay attention to, to succeed in producing flourishing
projects. A huge list of considerations should be in mind to process large datasets in a
minimum amount of time and within a specific budget, which is a real challenge!
Processing data within a specific time and budget is very critical for lots of
applications: in scientific and engineering problems (geology, physics, molecular
science...) , commercial applications (datamining, network video and multi-national
corporations...) and user applications (image and video editing, games, 3D-
animations...) [4]. The limitations for such demanding applications is seen from two
different perspectives: hardware and software. First in hardware, processors hit a
frequency wall of 4GHz in the 2000’s (Figure 1.1) because of terminal Silicon limit

(Figure 1.2).
e . CPU_Frequency 1993 _ 2005
RS, are. 2D snd Intel
g Liicle

4000

Frequency [MHz]

T T B

— i

Il

Figure 1.1: CPU Frequency with Respect to Time[4]

Figure 1. 2:CPU Limitations [4]

Second, the sequential programming model that executes instruction after the
other is not a good solution in case of large scale data given the time limitation
constraint.

In our project, we examine this problem and investigate one of the solutions
which was a combination of various technologies that, at the end, solve the large
dataset processing problem.

To overcome the hardware limits, a distributed system is used which is, in our
case, provided through the cloud computing system: this way, we can enhance the
performance through load distributing on multiple virtual machines and by this way
we will eliminate the one physical processor limitations. In addition to that, we will
gain additional features provided by the cloud system; backup, no single point of
failure, add computing power on existing infrastructure, share applications over
multiple machines, etc.[5].

Moving to the software side: the major key for improving the programming
model is using the MapReduce functional programming model. The main goal of
designing this specific model is to process large amounts of data using thousands of
processors which would perfectly mach to our hardware design as we are using a
distributed system “the cloud”. In addition, MapReduce would provide fault-
tolerance, status and monitoring tools and clean abstraction for programmers. Even
though Google was the one to develop the MapReduce model for processing web
data, its implementation is proprietary. For that reason, The Apache project “Hadoop”
is commonly used as an alternative in, for example, Facebook, Yahoo and also in our
project [6].

In our study, we focus on providing an indexing application (as an example of
MapReduce algorithm) for a user to search for a specific word from the indexed
document that was produced by running a MapReduce program on the cloud for a
large set of data. This data is located in the Hadoop distributed file system provided
by the Hadoop system installed in the cloud. . [7].

In our study, we focus on providing an indexing application (as an example of
MapReduce algorithm) for the client to search for a specific word from the indexed
document that was produced by running a MapReduce program on the cloud for a
large set of data. This data is located in the Hadoop distributed file system provided
by the Hadoop system installed in the cloud.

1.3.2 The Targeted Environment

The project was first designed to develop and evaluate new techniques for
applying pattern recognition and data mining algorithms on historical databases
generated by Oil and Gas Production Systems (OGPS) to answer useful queries about
trends and patterns of gas reservoirs and oil fields. This plan could not be achieved
successfully due to the confidential nature of the target OGPS data.

The second plan was dealing with large set of text data and applying a
MapReduce algorithm to generate and index of this data using cloud computing. With
the new plan, the targeted environment of the project is conceived as a simple
searching process supported by the indexing algorithm, which consists of a set of
innovative and advanced tools and services (MapReduce, Cloud Computing,
Hadoop...). Here, a user is presented with a simple interface in the form of search
window: interacting with it results into finding out the files were the word most
frequently occurs in a short period.

1.4 Goal and Main Objectives
The project goals can be summarized in six main points:

1. Understand the cloud computing technology and its environment, structure,
platforms, applications and services.

2. Explore the MapReduce model, to be able to understand how the map and
reduce functions are implemented.

3. Merge the knowledge about the cloud computing, MapReduce program model
and Hadoop platform. This is considered a major project goal, since it allows
applying data analysis techniques using MapReduce model on the cloud.

4. Investigate one of the most important applications of MapReduce model

which is indexing. In addition to that, the project aims at designing the needed

data structures, so optimal conditions are reached.

Apply the designed indexing algorithm over an intensive input dataset.

6. Design a search application with a friendly user interface. In this interface a
user can enter a certain word to be searched, and it will return back a list of
names of files where the word has highest occurrence. Considering that the
result will be delivered using the generated index.

o

1.5 Scope

The original project scope was directed towards efficiently analyzing
historical data repositories of oil and gas production systems using cloud computing.
Data was planned to be offered from Qatar Petroleum (QP) to develop and evaluate
new techniques for applying pattern recognition and data mining algorithms on
historical databases generated by Oil and Gas Production Systems (OGPS) to answer
useful queries about trends and patterns of gas reservoirs and oil fields.

However, this plan was not achieved successfully as it was not possible to get
this confidential QP data within the timeframe of this project. Therefore, the project
was redirected to a new scope that focuses on applying a MapReduce algorithm using
cloud computing technique on Web-scale data. To be more specific, apply indexing
and use MapReduce on a large set of data generated using a simple java code and
perform a search operation on the indexed documents to let the user search for a
specific word.

CHAPTER 2

FEASIBILITY STUDY & REVIEW OF RELATED LITERATURE

2.1 Introduction

The objective of this chapter is to give an overview about the main components of
our project and to give an idea about the relation between our project and previous
projects done in the same field. A literature review of the main components are
discussed from different aspects such as history, structure, hardware, software,
platforms and other related points needed to be clarified to understand the idea and the
work flow of the project. The following sections in this chapter are going to discuss
these main points.

2.2 Cloud Computing

2.2.1 Cloud Computing Concept

Cloud computing is an emerging Internet cloud based development with central
remote servers to maintain data and applications. In other words, it is a style of
computing in which dynamically scalable and often virtualized resources are provided
as a service over the Internet[7] (Figure 2.1). The resources may represent storage
area networks (SANS), network equipment, firewall and other security devices. Cloud
applications use large data centers and powerful servers that host Web applications
and Web services. Anyone with a suitable Internet connection and a standard browser
can access a cloud application.

Large corporation executives get benefit of cloud computing because it makes
their life much more easier: instead of taking care of a large amount of computer
devices and installing all the needed applications suite and licensed software, a better
alternative is to install one application into all client end-devices which will link them
to web-services where they can find all needed programs [8].

s

Database
(Storage)

Computer

Client
s Networ

Computer

Control ¢
Node -

-
ks seese s s

o

L1

Figure 2.1: Cloud Computing Concept[8]

Cloud computing is a concept used in e-mail applications like Hotmail, Yahoo!
Mail or Gmail: you log in to a Web e-mail account remotely. The software and

http://en.wikipedia.org/wiki/Internet
http://computer.howstuffworks.com/web-30.htm

storage for your account doesn't exist on your computer, it's on the service's computer
cloud [8]

2.2.2 Cloud Computing History

The Cloud is a term borrowed from telephony field in the 1990s. Telephone
companies where able to change wired fixed circuits which represented virtual private
network (VPN) with virtual private network (cloud) keeping the same bandwidth
which results in utilizing there bandwidth more efficiently (Figure 2.2)

L/
. R

option (VPN Gateway) [RACSSN

Authorized host with|
VPN client/gateway

Figure 2.2: Virtual Private Network[9]

In 1999, Marc Andreessen was one of the first to attempt to commercialize cloud
computing with an Infrastructure as a Service model. Then in 2000, Microsoft
extended the concept of SaaS through the development of web services.Next in 2001,
IBM detailed these concepts: it described advanced automation techniques such as
self-monitoring, self-healing, self-configuring, and self-optimizing in the management
of complex IT systems.

After that; in 2005, Amazon used cloud in its infrastructure which resulted in new
features faster and easier and as a result, the concept of cloud computing was getting
developed (Figure 2.3)

http://en.wikipedia.org/wiki/Telephony

3 CloudBernry Explorer for Amazon 53 El@
File ~ Toolz Help
[ol Softpedia =+ @ ty Computer ‘ I iT] l
_: Source; |5|:|Ftpec|ia v| Source: |M';-' Camputer v|
| | | Rook | @ | | Rook C: Softpedia |
% Copy Move ':_:_::___I Mew Bucket ® @ Copy fove = Mew Folder Delete
Marne Size || Mame Size *
L.
[alburn
[Audio
LA Icons
[Criginal images
Pt HIp
[Video
L _MBM_
%/ digitalalburns.db 1.4
\El| Parent - ChildSoftpedia. avi 0E
5| Pt aplicatie, gif 13
5| Pt screensaver,gif 0.9
" 5etup_Softpedia,exe 3.9
Softnews,iog S
Fi 111 3 4 i 3
Progress:

Figure 2.3: Amazon Cloud Explorer[10]

In 2007, Google, IBM, and a number of universities embarked on a large scale
cloud computing research projects [7]

2.2.3 Cloud Computing Advantage

The unique cloud architecture could give the cloud a large number of unique
benefits that other technologies could not possess. One of its advantages is that clients
could access their data anytime, anywhere if only having net access. Data is not
resided in the user's device or even an internal network which makes it much easier
for the user.

Switching to the financial point of view, cloud computing brings hardware cost
lower and saves IT support expenses: instead of having expensive large hardware
requirements of each client including large memory and fast CPUs, a cheap terminal
with a keyboard and a mouse would be sufficient to perform the same tasks using the
cloud computing system. In addition to that, streamlined hardware would have fewer
problems than a network of heterogeneous machines and operating systems and by
this way, IT team do not have to worry about software issues as updates and will be
free to concentrate more on innovation. Cloud computing will also provide faster time
to market: companies will have the ability to deploy and scale apps in hours without
changing the code ultimately which enables them to begin making a profit sooner.

10

Usually, servers and digital storage devices take huge space from the company
residence which is considered a real trouble for small companies but with cloud
computing, no more worries about the location. Cloud computing is letting the
company decide of either locate the storage devices in its location or rent someone
else's hardware and by this way, location problem is solved![8]

On the other hand, scientists and researchers work with calculations so complex
that it would take years for individual computers to complete them. On cloud
computing system, the client could send the calculation to the cloud for processing.
The cloud system would tap into the processing power of all available computers on
the back end, significantly speeding up the calculation which will result the output in
much less time with additional services that include more security, redundancy and
bandwidth.

2.2.4 Cloud Types

We have different ways of categorizing the cloud concept. One reasonable way is
to divide it into public, private and hybrid cloud (Figure 2.5):

Private/
Internal

Public/
Extemal

The Cloud

On Premises / Internal Off Premises / Third Party

CIOUd ComPUting Types CC-BY-SA 3.0 by Sam Johnsten

Figure 2.4: Cloud Computing Types[7]

Public cloud: (external cloud) It's the most traditional cloud environment that is
located outside the company' boundaries. This service is offered as a 3rd party vendor
and is provisioned on the Internet using web applications services (eg. Amazon EC2,
Sun OCP, Google AppEngine).

Private cloud: (internal cloud) A cloud environment which creates a pool of
resources within a company's firewall and includes resource management and
dynamic allocation, chargeback and support for virtualization.

Hybrid cloud: (mixed cloud) A mixture of both private and public cloud. It is an
environment in which external services are leveraged to extend or supplement the

11

internal cloud. For instance, one of the virtualization environments which require
servers is firewalls and spam filters. [8], [11]

2.2.5 High-level Architecture

The new cloud computing technique evaluated in 2009 [7] provides its unique
services, delivered through data centers, relying on its architecture. The high
virtualization technology architecture is mainly composed of three traditional layers
from the hardware till the applications (Figure 2.4). The cloud layers are represented
as follows: the infrastructure layer, the platform layer and the application layer.

User Machine
Interface Interface
Application

Figure 2.5: Cloud Computing Architecture[7]
2.2.5.1 Infrastructure layer (IaaS)

Starting with the infrastructure layer, it is considered as a platform
virtualization environment and it delivers infrastructure as a service (laaS). The laaS
service, in addition to the ability to scale, reduces the costs because you only need to
pay for what you use: rather than purchasing servers, software, data center space or
network equipment, clients instead buy those resources as a fully outsourced service
in the cloud[12] .1aaS is divided into three main categories:

The first category is the compute category which consists of physical
machines and virtual machines such as Amazon EC2, GoGrid and the OS-level
virtualization [7]

The second category is the network category which provides network services
that may be firewall or load balancing techniques. One of the network service
examples provided by the network category is offering a private virtual network
where customers can access the cloud over the network internet protocol security
[13].

The third category is the storage category which identifies the amount of
storage available and can be manipulated and managed by the clients.

12

http://en.wikipedia.org/wiki/Data_center

2.2.5.2 Platform Layer (Paas$)

Moving now to the platform layer which is considered as the primary key for
consuming the cloud infrastructure to support cloud applications [7]. The platform
layer offers platform as a service (PaaS) which allows clients to run their own
applications on the provided infrastructure delivered via Internet from the provider's
servers. PaaS service offers workflow which helps in applications design, develop,
and test stages. It is also beneficial in application services such as database
integration, state management, team collaboration and much more [14]. We can
divide the PaaS in two different perspectives: the PaaS producer and the PaaS
consumer. First, the PaaS producer deals with integrating the OS, application software
and service environment provided to the client. Second, the PaaS consumer how
interacts with the offered services using APl or GUI components [7].

2.2.5.3 Application Layer (SaaS)

Finally, the application layer that delivers software as a service is considered
as a multitenant architecture model where a client can browse a single application
provided by the cloud owner. The provider takes full responsibility of the application
for the client on demand so the client does not need to alleviate the burden of software
maintenance, ongoing operation, and support [7], [14]. Example of SaaS well known
applications are: YouTube (web application) and DropBox (for storage purposes) [7]

2.3 Hadoop

2.3.1 Hadoop History

In 2000, Hadoop was created by Doug Cutting, who named it after his child's
stuffed elephant. It was used as an open source to support distribution for the Nutch
web search engine project which is a part of the Lucene Apache project.. Although he
made a great amount of improvement , after indexing a few hundred million web
pages, he realized he was a long way off from indexing the quickly growing billions
of web pages on the internet.

In December 2004, Google File system (GFS) and MapReduce papers were
published by Google Labs, which allows very huge amount of computations to be
trivially parallelized across large clusters of servers. Cutting used that information
from the paper and added the GFS and MapReduce implementation to Nutch using
twenty nodes to run on.

In years 2006-2007, Cutting got a position in Yahoo company after seeing the
Hadoop code, then a team of engineers worked on the software so tens of thousands
of computers could be used to run them simultaneously, and researchers used that
software as data mining tool.

As any new good developed program, word spread about it and by the
beginning of year 2008, Amazon, Intel and Facebook were using Hadoop for many
issues like log analysis and other things. Even Google got involves, initiating a
project with IBM to offer major universities with clusters of some hundred computers
so students could improve their techniques for parallel programming.[15]

13

2.3.2 Hadoop Definition

Hadoop is a Java software framework for running distributed applications on
large clusters of commodity hardware. In the process application is divided into a
number of small chunks of work because Hadoop implements a computational model
called MapReduce, and each of the fragments may be executed or re-executed on any
node in the cluster. In addition, Hadoop has its own distributed file system (HDFS)
which stores data on the compute nodes and replicates data to multiple nodes to
ensure if failure happened for data in a node, there are at least two other nodes from
which to recover that piece of information. [11]

2.3.3 Why Hadoop is used

Having a huge unstructured data that comes from many sources and takes
many types such as web logs, text files, sensor readings, text messages, audio, video
and more. Dealing with this data needs many things as huge storage, reliability, tools
to deal and analyze this data and supervise any failure could be occurred .All of these
requires can be managed by the inexpensive Hadoop open source framework which is
used on cross-platform operating system[16]

2.3.4 HDFS Architecture

HDFS has a master/slave architecture as presented in (Figure 2.6). An HDFS
cluster contains only one NameNode that is a master server controls the file system
namespace and regulate access to files by clients. Moreover, there are some
DataNodes, usually divided one per node in the cluster. These DataNodes organize
the storage space related to the nodes that they run on. HDFS represents a file system
namespace and allows user data to be stored in files. Internally, a file is divided into
one or more blocks which are stored in a set of DataNodes. The NameNode settles on
the mapping of blocks to DataNodes , and executes file system namespace operations
such as opening and closing files and directories. The DataNodes read and write
requests from the file system’s clients, also perform block creation, deletion, and
replication after getting the instruction from the NameNode.

14

HDFS Architecture

Namenode /homeffoo/data, 3, ...

Metadata (Name, replicas, ...): ‘

Metadata ops v

Read Datanodes Datanodes
1 | ‘
A - - Replication 8 B]
]] n Blocks
Rack 1 VWrite Rack 2

Figure 2.6: HDFS Architecture[17]

HDFS is built using the Java language. As a result of that, any machine that
supports Java can run the NameNode or DataNode software. Whenever highly
portable Java language is used ,then HDFS can be arranged on a wide range of
machines. A usual deployment has a certain machine to run only the NameNode
software, while other each machine in the cluster runs one instance of the DataNode
software. The architecture does not prevent running multiple DataNodes on the same
machine but it is unusual to run like this case. Having only one NameNode in a
cluster simplifies the architecture of the system very much. The NameNode is the
arbitrator and repository for all HDFS metadata, and all the system is designed so user
data never flows through the NameNode[17]

2.4 MapReduce

2.4.1 MapReduce Overview

In the beginning of the twenty first century, many computations that are
specialized to process large amounts of raw data as crawled documents, web request
logs, etc... These computations were applied by authors and many others at Google.
They computed different types of derived data, like inverted indices, summaries of the
number of pages per host, various representations of the graph structure of web
documents. The input data was usually large in the computations, so it has to be
distributed among hundreds or thousands of machines to finish the process in a
reasonable time. Although the computations were straightforward, the matters of how
to parallelize the computation, distribute the data, and deal with the expected failures,
made the original simple computation to be very complex specially with the huge
amount of code to handle these issues.

As a result to this complexity a new model was designed to allow expression
of the simple computation with hiding the complex details of data distribution,

15

parallelization and fault-tolerance in a library. This model is inspired by the map and
reduce primitive in Lisp which is the oldest high-level programming language. The
use of this functional abstraction with user specified map and reduce operations
enables automatic parallelization and distribution of huge computations, and achieves
high performance on large clusters of PCs.[15]

2.4.2 MapReduce Programming Model

MapReduce is a programming model and a linked implementation for dealing
out with many terabytes of data on thousands of machines. Computation obtains a set
of input key/value pairs, and generates a set of output key/value pairs, so the user of
the MapReduce library states the computation as two functions: Map and Reduce.

In the map reduce function the user gets the data from data sources like lines
out of files, rows of a database, etc)and feeds them to the function as an input
key/value pair (e.g.: filename, line). Then it generate a set of intermediate key/value
pairs as shown in Figure 2.7. After that the library combined together these
intermediate values related with the same intermediate key, and pass them to the
Reduce method which accepts an intermediate key | and a set of values for that key
and tries to merges together these values to form a possibly smaller set of values.
From practice user can visualize that usually only zero or one final value will be
produced per key as presented in (Figure 2.7)

;
Shape Counter with ;
Map/Reduce A 1 .

2
1

1
2

A map 1. reduce |

ne 2 3A

Figure 2.7: MapReduce[18]

Important thing which should be noticed that all the map() functions work in
parallel to create different intermediate values from different input data sets, and the
same for the reduce() functions which run in parallel so each one work on different
output key.

16

Here is a simple example that could explain the functionality of MapReduce
Model. In this problem the number of occurrences of each word will be accounted
from a large collection of documents.

The map function emits each word and an related count of occurrences just
like 1 in the simple pseudo-code shown in (Figure 2.8) .On the other hand the reduce
function sums together all counts emitted for a certain word. In addition, another code
is used by the user to fill in a MapReduce specification object with the names of the
input and output files, the user then invokes the MapReduce function, passing it the
specification object.

map (String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate (w, "1");

reduce (String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt(v);
Emit (AsString(result));

Figure 2.8: Simple Code of MapReduce[19]

As said before when MapReduce process is used, the data must be distributed
among the different nodes, so the master program divvies up tasks depending on
location of data where it tries to have map() tasks on same node as physical file data,
or at least same rack.

Another thing that MapReduce module deals with the expected failures, where the
master detects worker failures in the re-executes completed, in-progress map() tasks,
and re-executes in-progress reduce() tasks. In addition, master notices particular input
key/values that cause crashes in map(), and skips those values on re-execution.| 19]

2.4.3 MapReduce Algorithms

There are many problems that can be mapped to a MapReduce program, such
as: sorting, searching, indexing and classification. These programs must fit the
features of the MapReduce algorithm. For any MapReduce algorithm, processing
data must go through a map phase and a reduce phase. With consideration that the
output of the map phase is the input to the reduce phase. [20]

17

2.4.4 Indexing using MapReduce

Indexing is the process of classifying and arranging a collection of data in
such way to make it retrieved easily.[21]

Using the MapReduce programming model, usually, inverted indexing
algorithms is used. Inverted indexing is referred to an index data structure that maps
from content, a key, may be word, number or phrase, to a location in specific storage
space.[22]

For map function, pairs of (file_name, content) are used as the input. Each
word is emitted with the file name, so the output of this map function is pairs of
(key_word, file_name). on the other hand, the reduce function takes(key_word,
file_name) pairs as an input. Then, for each certain key(word), the reduce function
make a list of files that this word is in. Finally, the output of this function is a pair of
(key_word, List_of files) [20]

2.5 Previous Work on Cloud

Amazon Elastic MapReduce: This is considered as a web service application
which can be implemented in various fields such as business, research, and data
analysis to process huge amount of data easily and cost effectively. Hadoop platform
is used as a framework and is running on the web scale infrastructure of the Amazon
cloud in which the infrastructure layer is composed of the Amazon EC2 virtual
machines [23] and the platform layer consists of Amazon S3 which represents the
simple storage service[24].

With Amazon Elastic MapReduce, one can perform data intensive tasks
whatever the data size is to achieve a wide variety of applications such as web
indexing, data mining, machine learning, log file analysis, financial analysis,
bioinformatics research and scientific simulation. The benefit of choosing the Hadoop
platform and implementing MapReduce Model on the Amazon cloud is: letting one
interact with crunching or analyzing the data without worrying about time,
management of Hadoop clusters, and cloud infrastructure which is provided by the
virtualization technique.[23]

There are lots of similarities between the Amazon Elastic MapReduce
application and the designed system in this project. First, the same main goal is
targeted which is data analysis using MapReduce programming model on the cloud.
Another point is the service type which is platform as a server PaaS: Amazon Elastic
MapReduce uses Amazon S3 and the project's Paas is BD2 Server. They both use the
infrastructure as a server laaS also: Amazon Elastic MapReduce uses EC2 while the
project's lassS is VMWare (XEN).

Even though both projects are very similar; there is one obvious dissimilarity
that is the application query: in the Amazon Elastic MapReduce, we have more than
one query (indexing, sorting...). However, the project uses one unique query which is
indexing.

18

2.6 Crawler

2.6.1 Web Crawler Definition

A web crawler is a simple program that crawl to wide world web in a
systematically way. It automatically passes through the Web. It is also called spider,
robot, or wanderers. [25][26][27]

2.6.2 Why Web Crawlers are Used

Web crawlers or web spiders are used for many purposes. Mainly, they are
used by the search engines to provide up-to-date information about the web pages, so
they can process this data for faster search. Many other things can be accomplished by
using web crawlers such:

1. Web site maintenance: they can be used to check the validation of the links
related to this site. [25]

2. Gathering data: they can be programmed to download pages from the web.
These pages can also be with some specifications. [25]

3. Searching for copyrights: for some companies, they can use crawlers to search
for copyrights violations or infringements. [27]

4. Performing textual analysis: crawlers can be programmed in such a way to
help in textual analysis such finding the most common words on the web, etc.
[28]

2.6.3 How Web Crawlers Work

A crawler starts with the seeds, which are the URLS to visit. When the crawler
visits a URL, it lists all the hyperlinks in the page and adds them to the crawl frontier,
which is a list of URLSs to visit. URLs from the frontier are recursively visited
according to a set of policies. [25]

2.6.4 Open Source Web Crawlers

There are many open source web crawlers, each has its features. Such as the
language used in programming, number of machines used to run, and data type
needed to crawled. Choosing a crawler is depending on the purpose of using it. Some
of the open source crawlers are:

1. Heritrix: It is an extensible, web-scale and distributed internet archive’s crawler.
This crawler is designed for archiving periodic snapshots of a large portion of the
Web. It was written in Java.[28]

2. Nutch: It is an Apache’s Open Source Search Engine. It is distributed and tested
with 100M pages. This crawler is written in Java and released under an Apache
License. It can be used in conjunction with the Lucene text-indexing package. [29]

3. WebSphinx: Originally, it is developed by Carnegie Mellon University. Now it is
a web crawler Java class library. It can work on a single machine. This crawler
has lots of problems and it is reported to be very slow. [29][30]

19

http://en.wikipedia.org/wiki/Lucene

4. Crawler4j: is a fast crawler written in Java and released under an Apache License.
It can be configured in a few minutes and is suitable for educational purpose. It
can work on a single machine and it should easily scale to 20M pages. The best
advantage is that it is very fast; it can crawl and process the whole English
Wikipedia in 10 hours. [29]

20

CHAPTER 3
REQUIREMENT ANALYSIS

21

3.1 Introduction

The goal of this chapter is to demonstrate the analysis and design of the
system. You can find the system specification, hardware and software requirements.
Moreover, system conceptual model, proposed solutions are explored. In addition to
that, this chapter shows a full description of the methodology of hardware and
software design. Also Design goals influenced by system specification, realistic
constraints and evaluation of the effect of design choices are investigated. At the end
of this chapter, work break down structure, and project schedule are illustrated.

3.2 System Specification

Referring to the architecture of the designed system shown in Figure 3.1, there
are three main layers which are: storage layer presented by HDFS in the cloud, system
applications layer which consists of indexing huge sets of data, saving the result of
indexed data into hashtable, and serializing the hashtable and search in it. Finally the
interface layer which shows the search interface designed in this project. To be able to
implement this system, some functional and nonfunctional requirements are desired to
be specified.

/ LayerI N

“ Search User Interface (A) “
/7 Layerll N
[1
Search in Hash (B) Indexing (C) Serialize Hash (D)
/7 LayerIIT Y,

f 1
“ Hadoop Distributed File System (E) Cloud Environment (F) “

Figure3.1: System Architecture-Three Tier Architecture Style

3.2.1 Functional Requirements

The functional requirements illustrate the relation between the system and its
environment independent of its implementation [31]. In this system, the environment
consists of hardware and software resources and environment like the cloud, HDFS,
Indexing using MapReduce, the inputted data itself, also the user of the system, and
its applications. One of the system functional requirements is index a huge sets of

22

data (0.5 TB) using the MapReduce algorithm. This data must be inputted as *.txt
files to suit the Indexing algorithm. In addition to that, from the functional
requirement is to convert the *.txt indexed output file into hashtable and serialize it.

Exploring the system from the user side, he/she can input a word that he/she
looking for through the user interface, if the word exists in the indexed *.ser file
(serialized object saved in a file) then the system outputs a result as a list of ten files
where the word has highest occurrence. On the other hands, if the word doesn’t exist,
a message shown to the user as “This word doesn’t exist”. All those functional
requirements are mapped together to produce a system that can analyze the processing
of large scale intense data on the cloud using MapReduce programming model.

3.2.2 Non-Functional Requirements

The non-functional requirements express features of the system that are not
directly related to the system functional behavior. Regarding the system described in
this paper, there are many different requirements that fit in this field. One of them is
usability. The user can address usability issues using the friendly user interface where
he/she can use it without login or registration. Moreover to ease the dealing with the
system, a “read me” file is given in the system, so the user can follow the guidelines
to do his/her search. Looking to the system from performance perspective, the system
should handle 0.5 TB, and the performance should be improved using MapReduce
algorithm on the cloud that provides parallelism.

3.3 Hardware and Software Resources

3.3.1 Hardware Requirements
3.3.1.1 IBM blue Cloud 1.6

One of the most important hardware requirements for this project is: first, IBM
blue cloud 1.6 which provides flexibility and scalability. Also it increases the ability
for customizing hardware and software in a simple way and reducing the cost,
installation and maintenance operations. The project takes advantage of the cloud
infrastructure available at Qatar University (QU) and Carnegie Mellon University in
Qatar (CMU-Q). The used cloud has some specifications :

Physical machines which are HS22 14 blades

A number of Virtual machines (at least 6 VMWares)

OS-level virtualization is Xen RedHat Linux 5.2

The IBM blue cloud in QU offers a private and separate network and
composed of VLANSs of range from 10.160.0.0 to 10.160.255.255 and the
host range is 10.160.255.0 to 10.160.255.255. The network configuration
is well demonstrated in Figure3.2

el el

23

All management servers for the Cloud +1.0 Solution are created as Xen virtual server (Xen WM). Once created and configured, the solution will
provision Xen virtual server running Linux O3S (aka. the Cloud).

Cloud v1.0 Topology w/ Standard Network Configuration

F 10.160.0.100 F10.160.0.101 F10.160.0.102 |‘10.150.0.103
Cloud Martagement Servers
ETHO ETHO ETHO 0
ITM
TPM NFS TDS
Server (LDAP)
[xEn HOST | XEN HOST || |[XEN HOST \[xEn nosT |
ETHO ETH1 ETHO ETHO ETHO
- Ad Cloud Managed Endpoints
o
External
10.160.0.50| Network 10.160.0.51 10.160.0.52 10.160.0.53
b b b
10.160.0.54 3
Cloud Isolated VLAN - P
Endpoint Range 10.160.250.0
10.160.0.0 to 10.160.255.255 to 10.160.255.255

Gateway= 10.160.0.1

XEN HOST

Efrﬂ

= Physical I:l = Virtualized Server (VM) fj = TPM Workflow —— = Isolated Ethernet
Server = OS5 with Virtualization & =ITM agents

Controller (Host)

Figure 3.2: Blue Cloud 1.6 Network Configuration at QU[32]

5. Blue Cloud 1.6 at Qatar University supports the repository architectural
style with at least 2 CPUs ,2.6 GB of RAM and 250 GB disk space and is
designed to store persistent data on DB2 relational database management

system. To implement those previously described features, DS3400
Storage for IBM is engaged [32].

6. Looking to the PaaS perspective of the Blue Cloud 1.6 at Qatar University

(see section 2.2.5.2), we may find a wide range of platforms including:

WebSphere Application server, BD2 Server, IBM Java SDK 6 and Hadoop

0.16.4 or Hadoop 0.20.1 (Figure 3.3) [32].

Description:

Wour Virteal Machines

Use the KM configurator & 307 servers &0 the project
Choase type of Preject: | Custm)
Select and Configure your Yirtual Machines.
1. Choose a Virteal Resource Closd 3 Chowse resaurces far your virtual machine(s)
Systemz @ Jcru i Memary Sterage
2. Chosse an Imege 120 2 1024

4. Choose any software or additisnal optieas |

RadHat 5.2

Recommtaded Resources

Figure 3.3: Possible Platforms Available in IBM Blue Cloud 1.6

24

3.3.1.2 External Disk Drive

Second, external disk drives that can hold up to 250 GB - 1 TB of data. This
external storage is needed to hold and move the data to cloud storage infrastructure.

3.3.2 Software Requirements
There are many software requirements related to the cloud which are:
3.3.2.1 Java Language

Java is a programming language which was designed for general purposes. It
has many characteristics which make it appropriate to use in the designed system.
Java programming language was created with specific goals and benefits. One of
them is that the java is designed to be simple, familiar, and object-oriented language
S0 it can be used to develop applications. Another thing that it should be robust and
secure and executes with high performance. In addition to that, java is platform
independent, and using a java virtual machine, java programs can be run on any
platform. Moreover, Java has automatic memory management using the garbage
collection in the object lifecycle. Using java syntax assisted in building our codes to
apply the whole system, also Java libraries like SWING library help in creating the
user interface in this system .[33]

3.3.2.2 Java Virtual Machine

In this project, Java Development Kit (SunJDK 1.6.0_06) or Java Runtime
Environment(JRE 1.6)virtual machines can be used and set in JAVA_HOME in the
variable environment. These virtual machines are Java software development
environment which contains everything that a user needs to create a java program, for
example it contains compiler, debugger, .jar Packages and other tools for developing
applications. [33]

3.3.2.3 Hadoop Platform

Hadoop is a Java software powerful framework for applying automatic
parallelization on many computing distributed applications on huge number of nodes
in a commodity hardware. Hadoop implements MapReduce computational model, so
the application is divided into a number of small chunks of work. In addition, Hadoop
has its own distributed file system (HDFS) which stores data on the compute nodes
and replicates data to multiple nodes to ensure if failure happened for data in a node,
there are at least two other nodes from which to recover that piece of information.
[11] .In this project, Hadoop version 0.20.1 is used ,it was the considered version
choice after testing for many other versions which had many problems and bugs, like
Hadoop 0.16.4,Hadoop 0.18.3, Hadoop 0.19.1.,Hadoop 0.20.0,

3.3.2.4 Eclipse

Eclipse is a Java environment which is available for windows and Linux
platforms. In the applied system, it is used for windows. Using this environment let
the user run his java codes easily. There are many versions of Eclipse, and Eclipse 3.2

25

EUROPA is the used version in this project because it suits the used version of
Hadoop 0.20.1.

3.3.2.5 MapReduce Plugins

Those plugins are added to the ones of the Eclipse, and are required to allow
running MapReduce programs on Eclipse, also to permit the interaction between
Hadoop Distributed File System on the cloud and Eclipse, where MapReduce
locations can be created, and MapReduce projects can be used.

3.3.2.6 Cygwin

Cygwin is a Linux like environment that allows Unix or Linux applications to
be compiled and run on a Windows Operating system. It is used in this project to help
in installation of Hadoop 0.20.1 because it can run the scripts supplied with Hadoop
which are written for the Unix platform only. [35]

3.3.2.7 Web Crawler

Web crawler is a small program that crawl to wide world web. It automatically
passes through the Web. It is also called spider, robot, or wanderers. It is used in this
project to collect huge sets of data to be processed and indexed later. In this project it
was supposed to use Crawler4j because it is good for education purposes, and it is a
fast crawler written in Java. [29]

3.4 The Conceptual Model

The previously discussed hardware and software requirements are going to be
applied in an efficient manner to achieve the project functional and non-functional
requirements. The bellow model (Figure 3.4) demonstrates the conceptual general
methodology followed during the project development. The system stages are
composed of three phases:

e First phase: the Linelndexer code is applied on a large set of data (generated
data in our case) stored in the HDFS and the output is stored there.

e Second phase: the CovertTextToHash code is applied on the output of the
previous phase , the output.txt is stored in a hash table and then it will be
serialized.

e Third phase: In the user interface, the user enters a word, then the serialized
file from the previous phase is deserialized and the code will perform search in
the deserialized hash and outputs the results to the user: outputs the 10 most
frequent files.

26

Insert (key)
from user

' List of File

Input Data S Output.txt Output.ser
Names

Phase I Phase IT Phase IIT

Figure 3.4: System Conceptual Model

Because our project is based on applying MapReduce algorithm, which is
indexing in our case, on the cloud, the most important and critical phase is the first
one: Linelndexer code. The second following conceptual model (Figure 3.5)
describes how the Linelndexer works. First the data is passed to the map step then the
output of the map is entered in the reduce step to produce the needed indexed file

27

Wordl,

|

Word2,
filename¥ filename®
Frequency Frequency

Data

v
Wordn,

filaname®
Frequency

||

Data
..... Map
v
Wordl, Word2,
filename% filename™
Frequency Frequency
\ ’

Wordn,
filename®
Frequency

|

Shuffling — Aggregate Values By Output Key (Sort - Merge)

Reduce

|

Wordl,
LintOfFilenames
%Frequency

l

Reduce

]
Word2,
ListOfFilenames
S%Frequency

l

Reduce

'
Word3,
LintOfFilename:
%Frequency

l

Reduce

v
Wordn,
ListOfFilenames
SSFrequency

|

\u “\ ni

Output.txt

Figure 3.5: MapReduce Phase Conceptual Model

3.5 Proposed Solutions

3.5.1 Utilization of Design Related Standards and Recognition of

Professional Design Codes

3.5.1.1 Cloud Computing Standards:

In our project, because the cloud is chosen to be the most important hardware
resource (as mentioned in section 3.3.1.1), cloud standards are applied. Cloud
computing open standards are influenced with the cloud computing technology
growth. As a result of that, each cloud provider has its own unique API which is not

interoperable with others [7]. One of the organizations working on developing cloud
computing standards is the Distributed Management Task Force (DMTF) and one of

28

the members of this organization is IBM. One of the standards developed by this
corporation is the Open Cloud Standards Incubator [”’37]. The DMTF standards focus
on standardizing interactions between different cloud environment by developing
cloud resource management protocols, packaging formats and security mechanisms to
facilitate interoperability [38]. In addition this standard, IBM cloud has standards like:

Open Cloud Computing Interface.

Federated security across Clouds.

Standards for moving applications between Cloud platforms.
Standards for machine-readable Service Level Agreements.
Standardized outputs for monitoring, auditing, billing, reports and
notification for Cloud applications and Services.| 39]

3.5.1.2 Software Standards:
3.5.1.2.1 Eclipse Standards:

Because we chose eclipse to be our software development environment, we
had to utilize the standards provided by the eclipse. The runtime system of Eclipse is
based on Equinox which is an OSGi standard compliant implementation [40].

3.5.1.2.2 Hadoop Standards:

Hadoop is the platform used to run a MapReduce program on the cloud. To
achieve its goals Hadoop is built on different standards. One of them is Hadoop
streaming: it is a Unix standard streaming used as an interface between the Hadoop
and any software environment like Eclipse which is in our project [1].

Another standard used in the Hadoop environment is the input/output
standard built by Python programming language and which says that the natural input
format is a text file. This standard is supported by all programming languages and
also java which is the language used in our project [1].

3.6 Hardware and Software Design Methodology

3.6.1 Hardware Design Methodology

As mentioned in the Hardware Requirements section (3.3.1), we are going to
use ,in this project, the IBM blue cloud 1.6. In addition to its features described in
3.3.1 section, the IBM blue cloud was considered as one of the project hardware
needs because this type is the one provided by QU university. Furthermore, all the
project group members attended a 3 day training about this specific cloud type so
dealing with this cloud would be easier. The last thing in this regards is that this cloud
is supported by IBM and any faced problems would be directed to them to be fixed.

3.6.2 Software Design Methodology

29

http://en.wikipedia.org/wiki/Open_Cloud_Computing_Interface
http://en.wikipedia.org/wiki/Equinox_(OSGi)
http://en.wikipedia.org/wiki/OSGi

3.6.2.1 Java Language and Eclipse

Fist starting with the language, java is used as our project language because it
is platform independent: because of using a java virtual machine, java programs can
be run on any platform. This is very important in our project since we are working on
different platforms (Linux, Microsoft). In addition to all what was said, GUI
components are provided in the swing library of the java language and by that, we can
develop our interface in a simple and fast manner. Besides that, java language is one
of our fundamental subjects studied in the computer engineering curriculum, it was
easy to work with it and use it as our programming language.

The used development environment for java is Eclipse. Eclipse is suitable for
both windows and Linux platforms. So, it is a good choice to have it as our java
environment. Also, the eclipse is already tested to work with the Hadoop platform to
write MapReduce algorithms.

3.6.2.2 Code design Methodology

As we are developing a MapReduce algorithm model and as we are using java
language, we designed java codes to fulfill this purpose. The java codes are well
explained in section 4.1 and the decisions made in those codes and what was exactly
used are explained as follows:

3.6.2.2.1 Set Number of mappers and reducers:

The MapReduce programming model is applied in the project for a specific
application which is indexing. The part responsible for the indexing phase is
demonstrated in the Linelndexer code explained in section 4.2.2. For the main()
method, we can find that the number of mappers is not set (default one) and the
number of reducers is set to 11.

Starting with the number of mappers: it is set to be the default one which
means that the number of mappers is calculated by dividing the total input size over
the block size which is by default 64MB. [1] We choose the default method because it
provides a high level of parallelism.

Moving to the reduce numbers: we chose 11 to be our reduce task number
because referring to statistical calculations: the best number of reduces is the number
of used nodes x 0.95 (6VMs x 0.95=5). With 1.75, the faster nodes finish their job
and switch to the second wave which provides good load balancing. (6VMs x 1.75 =
11). As aresult of that, increasing the number of reduces will increase the number of
failure. [41].

3.6.2.2.2 SortedList

The sorted list is used for the Linelndexer (map section) code in two manners:
first to store the indexed words, with their location and frequency and then to store the
unused list of words, which is a list of words that is usually are not searched for such
as: the, a, an and that. These words are chosen to be removed from the indexing input
files. Each sorted list has its individual link. We chose to the data structure of sorted

30

list because it has a high speed in inserting the elements (no need to move any
element) and its complexity is O(log, n) , where n is the number of elements, which
is considered very fast . The second advantage is that it does not have a specific size:
as long as there is a space in the memory, the sorted list will be stored [42]. Another
important thing to be mentioned in this regards is the methodology followed to select
the unused words that should be deleted from the index output file. We looked for the
most frequent words in English and took them from the following website
http://www.world-english.org/english500.htm and then we chose the unused ones for
a search purpose to make the searching process faster.

3.6.2.2.3 HashTable

The hash table is one of the data structures that offers very fast insertion and
searching. In addition to that, hash tables are relatively easy to program. For those
reasons, we chose this data structure to be the storage space for our indexed output
file. The main reason for choosing hash table to save the indexed files is its speed and
high performance. In general, the hash function used in the hash has the most
important impact. For the best function choice, and with a hash of n elements and k
keys, the number of collisions would be (0,k-n) and the number of lookups (1+ k/n)
[43]. A point to be mentioned here is that the hash used in our code is the one
developed by the JAVA langue and we only needed to override the JAVA hash
methods that are not available and the ones we need like word_search().

There is also another possibility for saving the indexed file in a database.
Using a database is another alternative but we chose hash because of the size of the
value which is not stable and fix: if we use database we have to fix the size if the
second row but our value is not fixed: (the word could be in one file, no files or
hundreds of files) so by using database, we may come to memory waste.

3.6.2.2.4 Serializable File

Because we are using a hash table, we can get benefit from the serializable
feature which means converting a specific data structure into a sequence of bits stored
in a file. In our project, we used this technique to store the hash table (where the
indexed file is stored) in a ser file.

We had two ways to perform the search application. Either search for the word
directly from the hash table created for each search or to deserialize the ser file and
search in it. We chose the second method because we tested both methods and find
out that searching directly from hash table takes 187 ms. On the other side, searching
from a deserialized file to hash takes 109 ms. This test was performed for an indexed
file of 643Kb size. With this results, we can assume that using a serialized file instead
of a direct hash table would be faster and more efficient and the suggested reason is
that file serializing uses data streaming but hash table doesn’t.

3.7 Design Goals Influenced by System Specifications and Realistic
Constraints

In this project, the system resources and the architectural design were chosen
depending on some important realistic constrains. One of them was the economical

31

http://www.world-english.org/english500.htm

factor, and this is shown in the hardware used in the project, where we didn’t have
the choice to buy a cloud of some higher specifications, but we used the IBM blue
cloudl.6 that is designed for educational purposes, and recently available in Qatar
University (QU).

Another limitation was considered in this project, was the organizational
aspect which also affect the system hardware resources: Although there was
collaboration between some organizations such as IBM organization and universities
like (QU) and (CMU-Qatar), There was no cloud system that enabled us to work
across the cloud, so there was no chance to use a hardware that consisted of multiple
clouds represented as one cloud.

In addition to those aspects, this project was limited by time. For example, in
the design of the applied system, there was a number of improvements that can be
added as discussed in section 6.5, on the other hands, that couldn’t happen because
there was no enough time to explore new fields.

From the other constrains on the designed system, is the bandwidth restriction.
A high bandwidth was needed when data gathering plan was collecting data using
web crawler, even it was needed in uploading the huge set of data from an external
hard drive into HDFS in the cloud, also it was required when we tried to run any code
we had created, specially the code responsible for doing the indexing job. But within
the rate of the bandwidth provided, gathering data plan was changed, and running
codes should be done in the university campus, so we could at least get good
bandwidth rate.

Furthermore, the user interface in this project is designed depending on the
social aspect, where it was considered to provide usability, and enable the user to
utilize it in a easy way. Looking for the political, ethical, health, security and safety
fields, those fields were out of the scope of the designed system.

3.8 Evaluation of The Effect of Design Choices

This system is designed depending on the professional design code.
Furthermore, it does not break any related standards. This provides usability where it
eases the employment of the system for any user. Moreover, this offers flexibility of
adding new features, applications and functionalities to the system. Following these
standards helps us as engineers to evaluate our movements in the project.

3.9 Work Breakdown Structure

This section discusses the work breakdown structure of this project as shown
in table 3.1. The project is divided into nine main tasks and all of these tasks are
performed by all of the team members.

Task 1: Literature Survey and Background: this task is to build a background about
the related topics and technologies needed in the project. Examples of the activities
that contributed to the fulfillment of this task are: gathering information and reading
about cloud computing, MapReduce, indexing, web crawling and Hadoop.

32

Task 2: Access CMU-Qatar cloud: this task was considered because we didn’t get
access to (QU) cloud immediately when we started the project. The task helped us to
know more about the cloud environment. This task includes having accounts on the
CMU-Q cloud. At the same time a Bitvise Tunnelier, SSH Terminal and File Transfer
Client to access the cloud. Then Learn how to create new projects and explore
clusters.

Task 3: Dealing with Hadoop: this task is divided into two main steps: installing and
using Hadoop on the local machine and using Hadoop on Qatar University cloud. A
number of versions of Hadoop were explored in this task in order to find a version
without problems and suits the used environment.

Task 4: Access QU cloud: In this stage, QU cloud was finally set, so accounts were
created and we could access the cloud using VPN client. And IBM training was
provided which offered a brief explanation about the hardware of Qatar University
cloud. Furthermore, illustration of the roles and capabilities of the cloud is provided.
The last day of the training is assigned to deal with cloud and Hadoop projects.

Task 5: Gathering Data: In gathering data task, we considered four different plans:

o Plan Ais to get the data from Qatar Petroleum Company(QP). Many
meetings are arranged between Dr. Qutaibah Malluhi and Dr. Khalid
Shaban with QP employees to convince them of the effectiveness of
the new cloud computing technology.

o Plan B is to get data using web crawler, but it was found that the used
crawler inefficient to collect needed set of data within the rest of time
we have to submit the project.

o Plan Cis to get the data from al-Jazeera Networks. But also looking for
the time constrain, the idea wasn’t doable.

o Plan D is to generate files using a simple java code, so we can gather
0.5 TB. After getting the data, it is moved to the cloud storage space.

Task 6: Query selection: For this project the indexing query was selected.

Task 7: Demo design and implementation: We have already completed the design and
implementation of the following components:

o MapReduce algorithm for generating an index for the huge input
consisting of large number of documents and a module to convert the
MapReduce-generated index (a text file) into a hash table for faster
search operation;

o Data generation code to supplement the input data collected through
the Web crawler,

o A simple graphical user interface (GUI) to issue a search query and
present search results.

Task 8: Testing and Evaluation: We have done some preliminary unit testing to test
the correctness of the individual modules, and integration testing to validate that the

33

modules can work well with each other (e.g. the search algorithm can work with the
output of the index converter output). More testing is needed to evaluate the
performance of our algorithm and to compare the performance of different scenarios
for running the algorithm (e.g. different input sizes, or platforms with different
number of virtual machines). These performance evaluation experiments have been
designed but not yet executed. this task is to test and evaluate the system. It is
expected that these performance evaluation experiments will be conducted in June
2010.

Task9: which is the last task is the project documentation.

3.9.1 Role of Team Members

Based on the below tasks description each student is responsible for
completing these tasks

Amira:1.1,1.2,1.3,1.4,2,3,4,5,6,7.1,7.2,7.3,8.1,9

Farah: 1.1,1.2,1.31,2,3,4,5,6, 7.1,7.2,7.3,8.1,9
Nadia:1.1,1.2,1.3,1.4,1.5,2,3,4,5,6, 7.1,7.2,8.1,9

3.9.2 Interdependence of Individual Role on the Team Goals

In this project, all the tasks given to the team members ,are relying on each
other. First, they need to explore the needed fields which are cloud computing,
Hadoop platform, indexing MapReduce algorithm. A second step is to gather the data
using files generation. After that, the team should implement the indexing algorithm
on the data sets using the power of Hadoop on QU cloud, and finally evaluation of the
performance can be done.

3.10 Project Schedule

Table(3.1) shows the Gantt Chart Activity of the project. It illustrates each
task with its corresponding time schedule.

Table 3.1: Gantt Chart Activity

Gantt Chart Activity Months

E=Activity E=Completed Activity Oct | Nov | Dec | Jan | Feb | Mar [Apr | May | Jun

Taskl: Literature Survey and

Background

1.1 Reading about Cloud Computing X

1.2 Reading about MapReduce X

1.3 Reading about Hadoop and Hadoop X

Distributed File System

1.4 Reading about Crawling X

34

1.5 Reading about Generating Files

Task 2: Access CMU-Q Cloud

2.1 Having Accounts on CMU-Q Cloud

2.2 Installing Tunnelier (a free ssh client
for windows

2.3 Configuring the Cloud Access

2.4 Using the Web Browser to Access
Qloud URL and exploring the clusters

2.5 Learning how to create a project on the
cloud with specific criteria

Task 3: Dealing with Hadoop

3.1 Configuring Hadoop on Local Machine

3.2 Configuring Hadoop on QU cloud

Task 4: Access QU Cloud

4.1 IBM Training

4.1.1 Briefly Reviewing Hardware of
Qatar University Cloud

4.1.2 Understanding Cloud Roles and
Capability

4.1.3 Dealing with Hadoop on Qatar
University Cloud

4.2 Having Accounts on QUCloud

4.3 Installing VPN Client

4.4 Configuring the Cloud Access and
Using the Web Browser to Access Qloud
URL and exploring the clusters

4.5 Creating a New Hadoop Project with
Special Specifications

Task 5: Gathering Data

5.1 Plan A: Getting Data from Qatar
Petroleum Company (QP)

5.2 Plan B: Use web crawler to gather data

35

5.3Plan C: Getting Data from Al-Jazeera
Networks

5.4 Plan D: Generate files with some
Specifications for Testing

5.5 Moving Data to the QU Cloud Storage
Space

Task 6: Query Selection

Task 7: Demo Design and
Implementation

7.1 Design Effective Algorithm

7.2 Implement Indexing Using MapReduce
on The Cloud

7.3 Build the System Interface

Task 8: Testing and Evaluation

8.1 Execute on QU Cloud

8.2 Evaluate Performance

8.3 Optimize Performance

Task 9: Research Documentation

36

CHAPTER 4

IMPLEMENTATION AND DEPLOYMENT

37

4.1 Introduction

This chapter illustrates the implementation and deployment of our design.
Logical flowcharts for basic classes are drawn and explained. Also, you can find a
fully description of the completed integrated system. In addition, we point out to the
computer environment deployment. At the end of this chapter, software installation
and usage steps are listed.

38

4.2 Logic Flowcharts

4.2.1 Generate Data Flowchart

Generating data was the solution for many problems in getting real data. Figure 4.1
and Figure 4.2 show the whole process

Has dis more
lines ?

Create File fileIn
str=read line

from dis

Attach fileIn path
to
FileInputStream
fis

itr = tokenization
of str

Attach fis to a
BufferedInpuStream
Object bis

Has itr more
tokens?

Attach bis to
DataInputStream
Object dis

Y

x=next token

Create Array of
Strings with Size
of 500 "words"

str=null
i=0

b5

words[i] =x
i++

Figure 4.1: Generate- Part 1 Flowchart

39

=

Output to the output file
59000 words "aaaaa "
Block in details is provided
in Appendix E

fileCounter =0

Output to the output file
5500 words picked
randomly from the input
file with random number of
word per line
Block in details is provided
in Appendix E

fileCounter
< 104857

path=
"Directory/output"”

+ (fileCounter+1)
+".txt"

Output to the output file
500 words"AAAAAA"
Block in details is provided
in Appendix E

Create output file
for this path Close All Streaming

Objects

Create Writer
object for the
output file

File
output_fileCounter.txt

Generate a random number
pickWord=no between 0 and 499

fileCounter ++

Figure 4.2: Generate- Part 2 Flowchart

40

4.2.1.1 Generate Class

The main method starts with declaring some required objects such as the input file,
number of files to be generated, ..etc. Then the code is divided into two main sections:

e Section 1: lines 44-59 in the code are used to save words from the input file to
array of strings, words[]. This makes getting random word easier by
generating a random number as an index to a random word.

e Section 2: lines 65 to 102 are used to generate the text files. An outer for loop
is used for numbering and naming the output files. Words in each output file
are collected using 3 for loops. The first loop is used to generate 59000 “a aa
aa” at the beginning of the output file. The second loop is used to pick
550000 random words from words[] array and put them in the output file. The
last loop is for putting 58000 “ A A A A A~ at the end of the output file. By
the end of the third loop, generating one file is completed and the outer for
loop will take care of switching to generate the next file.

Code is provided in Appendix D section 2. Generate.java.

41

4.2.2 Linelndexer Class Flowcharts

4.2.2.1 Mapper Flowchart

Read (File
Name, Content
of the file)

my_Useless_List=
list of unused
words
myList=null

content=content
of the file

itr= tokenization
of content

Has itr more

No

temp=first item in

tokens?

Yes

x=next token in
itr
frequency=0

Does x not exist
in
my_Useless_List

No

Yes

frequency of x in
myList ++

myList

Add x to myList
with frequency =1

temp!= null

Yes

keyword=temp.word
fre=temp.frequency

locFrequency= file
name%frequency of this
keyword in this file

output to reducer
(keyword,
locFrequency)

temp=next item
in the list

L |

Figure 4.3: Mapper Flowchart

42

4.2.2.1.1 Map Method

Figure 4.3 shows how the map works. For each file, it makes a list of the
words in the file with their frequencies, and finally, output them all to the reducer as

(word, filename%frequency) pairs. Code is provided in Appendix D, 3.
Linelndexer.java

4.2.2.2 Reducer Flowchart

Read

(keyword,
values)

’

first= true

Create
StringBuilder
object toReturn

Output
RS _aeer (TS
toReturn)

Yes

first I= true

Yes
append a comma
to toReturn

first = false |

v

Figure 4.4: Reducer Flowchart

43

4.2.2.2.1 Reducer Method

Each reduce task handles a word(the key) to collect all the file names and the
frequencies related to it. Then, it passes the (word, List of files with frequencies) pair
to the final output file. Figure 4.4 demonstrates the process of the reducer. Also, code
is provided in Appendix D, 3. Linelndexer.java.

In Linelndexer class, the map and reduce tasks are configured and called in the
main class. Many configurations can be set. This main is the driver of this
MapReduce project. The list of configurations, used in our code, are as follows (refer
to code listed in Appendix D:3 . Linelndexer.java):

Line no. 122: set the name of the job for the client to be the class name.

Line no. 127: set the input path used by the HDFS.

Line no. 128: set the output path used by the HDFS to store the results.

Line no. 126: set the number of reducers (refer to section in 3.6.2.2.1 the
methodology to know how this number is chosen).

e Line no. 129 and 130 is used to set the mapper and reducer class.

44

4.2.3 Convert Text to Hash Table Flowchart

Read text file to
InputFileStrea
m Object

Create
InputStreamReader
Object for the
InputFileStream
Object

»

Create a
BufferReader for
the input file

line=a line in the
buffer

Create an
OutputStream File

Yes

itr=tokenization of
line
key= the first token

!

initr
toReturn=null

Has itr more
tokens

Create an
OutputStream
Object

.

Write the hash
table in the
outputStream
object

.

Yes

Close
outputStream
Object

append the next

token to toReturn

y

value = toReturn

add (key,value)to
the hash table

Close
OutputStream File

Figure 4.5: Convert Text To Hash Table Flowchart

45

4.2.3.1 Convert Text to Hash Class

Figure 4.5 shows the flowchart of ConvertTextToHash class. This class is
used to convert the text file, which is the output of the Linelndexer, to a hash table
(object of class Hashtable). Then it serializes it and saves it into a .ser file. This file is
used in SearchHash Class to be loaded and used in the search application. The code is
provided in Appendix D, 1.ConvertTextToHash.java

4.2.4 Search in a Hash Table Flowchart

Figure 4.6 illustrates the flow of the searching application. The user enters the
keyword to search for it. Then, if this word exists in any file that indexed using
Linelndexer code, the list of the top 10 files that have highest frequencies is printed to
the user. If this word has a list of files contains less than 10 file, then the whole files
are printed to the user.

46

from .SER file

.

Search(keyword)

Load Hash Table I

No)
= Print Error
z Message
N Print List of
° All Files

Yes,

Has this
keyword > 10
files?

Yes

Print List of
top 10 Files

Figure 4.6: Search in a Hash Table Flowchart

Searchlinterface class and SearchHash class are used for searching in the hash
table. The user uses the interface to enter the keyword and to get the list of files (the
result of the searching). However, the Searchinterface class uses SearchHash class for
the actual searching. Codes are provided in Appendix D, 6.SearchHash.java and
7.Searchlintrface.java.

4.2.5 Other Classes

There are many other classes used in coding such as Link class, Link1 class,
UnusedList class and SortedList class. All commented source code is available in
Appendix D.

47

4.3 Completed Integrated System Deployment

The below figure summarizes the previously discussed classes in section 2.4.

It shows the complete integration of whole system. Starting from generating the

testing input data, passing through the indexing phase, and ending with the user

interface.
g word — Interface List of
3 Top Files
=]) |
£,z
s £y output.ser g—# HashTable
-] [}
]
=)]
e __
2 <o
c]
@E § £ E output.txt ConvertTextToHash
0 [
= 529
(8]
w
2 \
z
5 outputl | output2 | outputml
3 Ce
Lo
3
o ’!
)/
3 |
£ .
X Q
g g reducel reduce2 | ...
c k-
- Q
o
I \
] l
& [map1] L map2] — [mapk
[
=
]
® inputl.txt input2.txt inputn.txt
a
o
c
£
]
™
)
c
g Generate

Figure 4.7: Completed Integrated System

48

4.4 Computer Environment Deployment

This section discuses the needed platform for running the system. First of all,

the virtualization system, which is the blue cloud 1.6. As Qatar University students ,
we used the QU cloud. Second, the Hadoop platform, which should be installed and
configured on all the VMs (nodes) in the project on the cloud. In addition, Cygwin,
which is a Linux like environment, is needed to run some commands on the Hadoop
platform. Also, Java Development Kit (SunJDK 1.6.0_06) or Java Runtime
Environment(JRE 1.6) virtual machines are needed in order to run the system. For
further information, refer to section 3.3.1.1, 3.3.2.2, 3.3.2.3and 3.3.2.6 .

4.5 Software Installation and Usage

This section provides the methodology of software installation and usage of

the system. The following steps are required to run the system correctly:

1.

oA~ LN

B oo~

13.
14.
15.

16.
17.

18.
19.

20.

Be sure to have a custom project on the cloud with 8 VMs each with size at least 80 GB.
Each VM should have 3 CPUs for better performance.

Download and install on of Java VM (JDK1.6 or JREL1.6)

Download Eclipse 3.2 EUROPA.

Download and install Cygwin.

Download a copy of the used Hadoop on the cloud to your local machine.
Configure your local machine by adding the required environment variables and the
needed hosts to the defined hosts in your machine.

Add the Hadoop plugins to Eclipse.

Create a new Hadoop location.

Test the connectivity between your machine and HDFS on the cloud.

. Create a new MapReduce project and extract the given project(saved on the CD, called

“FinalSeniorProject”) to it.

. Create a new directory on the HDFS for the input files and upload them on this directory.
. Run the Linelndexer.java on the Hadoop location that you have created. Be sure to

include the path of the input folder in the main of the line indexer, and specify the output
path.

The output is 11 text files, each reducer produces a separate output file.

Download these files to a new directory in your local machine.

Merge them by using any merging software such as TXTcollector, which is a free
merging tool.

The output of this program should be your input to the ConvertTestToHash class.

Run ConvertTestToHash class. Do not forget to put the path of the input file in the main
method. This running should output a output.ser file.

Put output.ser file in “C:/ .

To run the search application, you have two methods.

a. Run the Searchlinterface.java. Then, the interface will appear.

b. Copy Searching jar file from the given CD to “C:/” on your local machine. Then
go to your command line and change the directory to “C:/”. Next, write this
command “java —jar Seaching.jar”. Then, the interface will appear.

Now, you can search for any word included in the input files.

For a clearer and more detailed instruction of installation and usage, see Appendix

A and Appendix B.

49

CHAPTER 5
TESTING AND EVALUATION

50

5.1 Introduction

This chapter is concerned with a very critical step software engineering
designers do after analyzing, designing, and implementing their system. This step is
testing. Testing is finding out the difference between the expected system’s behavior
and the implemented system’s one. The purpose is to find out faults in the
implemented software in a panned manner. [31] In this chapter, the testing plan is
presented, then the different testing stages are elaborated including unit testing,
integrated testing system testing, and performance testing. Finally, an evaluation of
the system and its impact on both computing and economy and society is stated.

5.2 Test Planning

One of the success keys for testing is planning ahead what should be tested
and when. Test planning should occur early, i.e. in the development phase so that we
would have sufficient time and skills for testing [31]. From that perspective, we had
our own testing plan and for each project piece, testing was scheduled. First, the
generated code was tested individually, then testing the whole system was the next
step and it was scheduled to be tested as figure5.1 shows:

LineIndexer Code

SearchHash Code

SearchInterface Code (_

Interface

| Application Logic |-—————-—--—
-

Platform Tesfing —_

Installation Testing | ——

Figure 5.1: Test Planning

5.3 Generating Data Testing

Generating data code had to be tested in the applied system (Refer to
Appendix D part 2.Generate.java for the code). Because it is a separate part, it should
be tested using unit testing. The generation code is tested with state-based testing as
the figure5.2 shows:

51

Foreach

line
Tokenize

. each line 2

Readfile l
1

Repeat
number
of files

Repeat
500 times

Repeat
500 times

Repeat 5500
times

Figureb.2: State Chart Diagram for File Generation

After testing the Generate.java code. We decided to use it as a source to
generate the needed data for our project after trying all possible planes previously
mentioned in the report: crawler, QP, Al-Jazeera (refer to section 3.10 to look for
possible plans for generating the data)

5.4 Unit Testing

Unit testing is a concept of decomposing the whole system into individual
blocks. Each one of them is tested independently of the others. This type of testing is
very powerful for lots of reasons: first, it reduces the system complexity. Second, it
makes it easier to find out the faults for each individual block and third, it allows the
designer to test lots of blocks in parallel without the need to wait for each piece to be
individually tested [31].

Unit testing was utilized in our project mostly for code testing because the
code was easily dividable. The code was decomposed into 3 main tasks. The first one
is the Linelndexer code which performs the indexing MapReduce algorithm, the
second task is the searchHash where we create a hash from a file and we serialize it
and search in it. Finally, the interface code where we use the Java Swing library to
provide a simple search interface for the user.

5.4.1 Linelndexer Code

Starting with the Linelndexer code, and looking deeply into its details, we can
notice that we can split it into two parts; the map and the reduce parts, and test each
one separately using different methods.

The map was tested using the path testing (white box testing) where all
possible paths in the code where investigated to define the faults in the map

52

implementation. The bellow activity diagram describes how this test is performed on
the map code and how it was implemented to interpret the map faults:

Map

[itr.hasMoreTokens]

Ye

w

[!{itr.isinUselessList)]

No

!
4=
'

Yes

i [itr.isinMyList]

Figure 5.3: Equivalent flow graph for the Map implementation

From the previously shown figure5.3, we can notice that all the Map code
paths are elaborated. Using it, we can determine a list of different cases and determine
their corresponding paths referring each time to the activity diagram. Refer to table
5.1 to see all possible tested cases in the system for Map implementation.

Table 5.1: Test Cases and Their Corresponding Path for the Map Activity Diagram

Test Case

Path

(itr = cloud) // supposed cloud word only
appear once

{cloud Filename%?1}

(itr = is)

Go to next iteration (is is from unused list)

(itr = project) // supposed project word
appeared 3 times in the file

{project Filename%3}

(itr = null) // supposed no words are left in
the file

Go out of the map implementation

Another point to be mentioned in testing the map code is testing each part of
the map individually. There are three concepts involved in the map: the link class, the
SortedList class and the UnusedList class. For each class, some input samples were
provided and the output was interpreted, so blackbox testing was exploited for each

53

class used in the map class. One of the faults discovered during the UnusedList
blackbox testing is that files are not supported to be used in the MapReduce
programming model: we tried to let the unused words list from a file so it is easier to
change those words but this did not work.

Moving to the reduce phase of the Linelndexer code, the method used to test
this portion of the Linelndexer code is also blackbox testing. Blackbox testing’s
advantage is that it reduces the number of test cases: all possible inputs are partitioned
into equivalent classes and a test case is used for each class [31]. In testing the
reduce, we tried to put as input for reduce and output of the map a string instead of a
text type but this did not work: reduce method only accepts text input format. Because
the input for reduce is text type, special characters and numbers are accepted to be in
the file name.

After testing the whole Linelndexer code (refer to Appendix D part
3.Linelndexer.java) and after verifying that it worked correctly and as expected, this
code was used to index the set of input data that will be manipulated to apply a simple
search interface.

5.4.2 SearchHash Code

In the searchHash code, different testing techniques are applied on the
individual methods in the class. The put, containsKey and get methods are
implemented from the ones provided by the Java HashTable library so we didn’t have
to spend time testing them. The ones that were tested are the wordSearch and the
serializable methods. Looking at the wordSearch method: state-based testing is
applied. It is a recent testing method that depends on comparing the resulted system
states to the expected ones. For this purpose, the statechart diagram is used [31]. This
technique is applied in our project as the next figure shows:

54

®
1. l 2 3.
Lookforword Wordfound © Getfile name | splitfile namefrom © Gethighest10
with freque freque
. frequency .
word notfound:
return “word return “ list of
notfound” 4, most frequent
files”
Return Result
®

Figure 5.4: Statechart Diagram for wordSearch Function

Moving from the wordSearch method to the serializable method, this method
was tested using blackbox testing. A set of possible inputs are partitioned into
equivalent classes and each class was tested. For example a wrong path is put in the
serializable output stream and the code could detect the error. Another example of
testing is using a hash of different sizes and all of them were successfully converted
into a serializable file so there is no hash size limit as long as we have a space in the
disk to save the serializable file.

The previously tested part ,after verifying that it worked correctly, is used in
the project to serialize the output of the index code. We will use precisely the code for
serialization and for searching in hash tables.

5.4.3 System Interface

The system interface testing may be viewed from two diverse perspectives.
First point to be tested in the interface may be following the unit testing technique.
Another interesting point to be tested regarding the interface is the usability testing.

Starting with the unit testing. The interface code was tested this way and more
precisely, it was tested using the blackbox testing. In this test, all possible input cases
are tested. An example of that is trying to enter to the search window the same word
in capital and small (where Note (1) is stated in figure 5.5) and the result was not the
same. From that we could conclude that there was a fault in the code and we had to
fix it, so when the input is entered, it is not case sensitive as shown in figures 5.6.

55

Enter word to search for

Eook

AEE)

Figure 5.5: Sample of Screen Shot Interface

I
Search

EBX

Search

Note(1)

CBX

fileS 4,100}
file1 0.t 100}
file b, 50}
fileT b, 50}
fileT.bt, 50}
filed 1,6}
file2 4,2
filad.bt,2
files e, 1

}
}
}
filel b, 1}

Most Freequent Files:

Enter word to search for |hadoop

Most Freequent Files:
file.tt, 100}

file10 100}
fileB.tat 50}
fileT t 50}
file 7 tet, 50}
filed bt B}

Figure 5.6: Sample of The Interface that Shows Not Case Sensitive Input

Another example about black box testing for the system interface , is entering
a word that does not exist in the used indexed data, and the result was having an error.
So problem was solved by printing a sentence “ the word does not exist in the files”
when the user enters unavailable word as shown in figure 5.7

56

Search

Enter word to search for |study

The wiord does not existin the files..

Figure 5.7: Output for unavailable word in the files.

Talking about the interface usability test, scenario testing method was chosen
to be the type of usability test we are performing. Scenario test is a test where one or
more users are presented to the system. This test allow designers to determine how
much the system is usable and how the user deals with the system description [31]. In
our project, we decided to apply this test by providing a read me brochure to a random
user and observe how he interacts with the system. As a result, we got significant
feedbacks about the system and those feedbacks were considered and were used to
improve the system.

5.5 Integrated Testing

The integrated testing is a test type that focuses on figuring out system
faults that are not well tested in the unit testing by focusing on small components of
the whole system. It’s methodology is very simple: first 2 components are integrated
and tested and when no faults are found, additional components are added [31]. There
are four types dedicated for integrated testing: big bang testing, bottom-up testing ,
top-down testing and finally sandwich testing. In our project (figure 5.8), the bottom-
up testing was considered as the best testing technique to fit our hierarchal system
design. In this specific strategy, each bottom layer component is tested individually
then integrated with up layer components. In layer I11, first the cloud environment
(subsystem F) was exploited then the Hadoop distributed file system (subsystem E) is
tested (refer to platform testing in section 5.5.1). Moving to the layer Il, triple test was
applied on the indexing application (subsystem C) integrated with the subsystem E
and F. In the same time, search in hash (subsystem B) and serialize hash (subsystem
D) is tested (refer to unit testing section 5.3.2). To finish, layer I is tested using
quadruple test is applied where four subsystem were tested and integrated together: B,
C, D and search user interface (subsystem A).

57

Quadruple testing A,B,C,D

-

=" Search User Interface (A) T -

F Y
£ N
I 1
\ I
LY Fi
b e
- | I S | o’
" SearchinHash(®) _ -~~~ Indexing(C) ~ ~~_ Serialize Hash @) ~
"'“:-S.____ -‘:};____..
— T e e e m e ——mem== w
’ \
/ A
/ \
I i
1 I
\ [| Il
Hadoop Distributed File System (E) Cloud Environmepf (F)
» ”
LY &

e ==

Triple testing C,E,F

Figure 5.8: Bottom-up test strategy

5.6 System Testing

Unit and integrated testing focus on individual components and the interfaces
between the components. After this step is performed, system testing is applied to
ensure that the complete system complies with the specified functional and non-
functional requirements [31]. The actions to be performed in the system testing in our
project is composed from: platform testing, installation testing and performance
testing.

5.6.1 Platform Testing

Platform testing is a method for testing used to test the used system platform.
In our case, the platform testing is divided into two major sections: the Hadoop
platform test and the cloud infrastructure testing.

5.6.1.1 Hadoop Testing

Because Hadoop was chosen to be our MapReduce programming platform, we
had to make sure it is working as expected. The first thing done in this regards is
installing the local Hadoop and test it on our machines. Starting with Hadoop version
0.16.4 till 0.20.1, all those versions were tested to be working fine. The problem
appeared when trying to connect the eclipse software development environment with
the different Hadoop versions. To solve this problem, online searches were performed
(https://issues.apache.org/jira/browse/HADOOP-5225 is an example of the most
useful websites to debug the Hadoop bugs). From the search done about Hadoop
development, we figure out that all Hadoop versions need to be reconfigured and

58

https://issues.apache.org/jira/browse/HADOOP-5225

some bugs need to be fixed so Hadoop runs properly. The solution for this problem
was getting a ready tested version to work on. CMU could provided for us a debugged
version by the CMU system administrator. This was Hadoop 0.20.1 and it was tested
on our cloud and the eclipse connection was also elaborated. To make sure that
everything was working fine, WordCount code and the original Linelndexer code
provided by yahoo was implemented as a MapReduce project and we ran it on our
cloud location and it worked fine.

5.6.1.2 Cloud Testing

After testing the Hadoop platform and running the Linelndexer code on a
small set of data, the same code was tested on larger set of data (1.6 MB). While
observing the cloud status and the VMs usage when the code was running, we found
out that we were running out of recourses and we need more CPUs and more storage
space for each VM. First, we had to change the cloud project system specifications to
support at least 250 GBs as shown in figure5.9 (6 VMs each VM with 255 MB). From
this point, cloud problems started to showing up: using the cloud, we find out that the
cloud status was not stable and the Hadoop was wrongly configured in our cloud. We
also discovered some cloud limitations , as an example of them that the cloud
interface can’t support a project with 8 VMs each with 255GB. The solution of this
problem was getting help from IBM corporation.

Project Infrastructure

System Info
p 10.160.2.14
05 Type Xen RedHat Linux 5.2
Paol [Type Xen System % (xen)

Admin Password W2M70BZQ

B vm-10-160-2-15

System Info
1P 10.160.2.15
05 Type Xen RedHat Linug 5.2
Poal f Type Xen System % (xen)

Admin Password ETAETLBN

B vm-10-160-2-23

System Info
1P 10.160.2.23
05 Type Xen RedHat Linug 5.2
Poal f Type Xen System % (xen)

Admin Password ULS34Q6D

3.0CPU (3 vepus

¥en System x YM (
4,0CPU
I
I

B vm-10-160-2-25
Xen System x VM
Xen System x VM

4 vopus) - 3072MB Memory
3.0CPU (3 veopus

),
),
),
3.0CPU (3 vopus) -

3.0CPU (3 vopus) - 3072MB Memary -

3.0CPU (3 vopus) - 3072MB Memary -

3072MBE Memary -
- 255GB Disk (incl, 5120MB swap
3072MBE Memary -
3072MBE Memary -

Additional Software
Hadoop 0,164
IBM Java 50K &
IBM Tivoli Monitaring Agent:

255GR Disk (incl, 5120MB swap)

Additional Software
Hadoop 0.16.4
IBM Java SDK &
18M Tivali Manitoring Agert

255GR Disk (incl, 5120MB swap)

Additional Software
Hadoop 0.16.4
IBM Java SDK &
18M Tivali Manitoring Agert

255GR Disk (incl, 5120MB swap

255GR Disk (incl, 7680MB swap

i
i
i
255GR Disk (incl, 7680MB swap

)
)
)
)

Real Time Monitaring
CPU Usage 1%
Memary Free 2.78 GB
Storage Free 231.03GB

¥en RedHat Linux 5.2

Real Time Manitaring

monitoring error

¥en RedHat Linux 5.2
Real Time Manitaring

monitoring error

¥en RedHat Linux 5.2
¥en RedHat Linux 5.2
¥en RedHat Linux 5.2
¥en RedHat Linux 5.2

Name Hardware Configuration Base Image Status
Xen System x YM 3.0CPU (3 vopus) - 3072MB Memary - 255GB Disk (incl, S120MB swap) ¥en RedHat Linug 5.2 Failed
D vm-10-160-2-14 3.0CRU (3 vopus) - 3072MB Memary - 255GB Dick (incl, S120MB swap) %en RedHat Linug 5.2 Active

Remate Contral
Q) Poweron
[Power Dff

m@ Restart

Active

Remate Contral
Q) Poweron
[Power Dff

& Restart

Active

Remate Contral
Q) Poweron
[l Power Off

& Restart

Failed
Active
Failed
Failed

Figure 5.9: State of Nodes in the Cloud

5.6.2 Performance Testing

The following two sets of experiments are
MapReduce parallelism in many aspects.

designed to

study the of

59

5.6.2.1 Correctness

Experiment 1: Testing the correctness of the indexing code

This experiment tests if the output of the Linelndexer is as expected or not.
Testing Environment is shown in Table 5.2.

Table 5. 2: Testing Environment for Experiment 1.1

Constraints Specifications

Input Data Small, about 2 MB — 1 GB

No of Virtual Machines 6 VMs

Disk Size per VM Could be from 120 GB - 255 GB

Memory (RAM) Size per VM | 3072 MB

No of CPU for Data Nodes 3 CPUs

No of CPU for Name Node 4 CPUs

5.6.2.2 Response Time

In our case, we define response time to be the time that the MapReduce job
takes to be terminated successfully.

Experiment 2.1: Study the impact of the number of VMs

For this experiment, three different cloud projects should be created (assuming
the total available HDFS storage is 512 GB):

1. Two VMs (each of 256 GB)
2. Four VMs (each of 128 GB)
3. Eight VMs (each of 64GB)

Number of reducers tasks is 5 in this experiment. Other Specifications are
shown in Testing Table 5.3

Table 5. 1:Testing Environment for Experiment 2.1

Constraints Specifications

Input Data 256 GB

No of Virtual Machines Vary

Disk Size per VM Vary as shown in the described above steps
Memory (RAM) Size per | 3072 MB

VM

No of CPU for Data Nodes | 3 CPUs

No of CPU for Name Node | 4 CPUs

Experiment 2.2: Study the impact of the number of reducers

For this experiment, the same job should be run three times with three different no
of reducers and the same other specifications, which shown in Table 5.4.

60

1. default (one reducer)

2. one wave (number of VMs * 0.95)
3. two waves(number of VMs * 1.75)*

Table 5. 2: Testing Environment for Experiment 2.2

Constraints

Specifications

Input Data 256 GB

No of Virtual Machines 6 VMs

Disk Size per VM Could be from 120 GB - 255 GB
Memory (RAM) Size per | 3072 MB

VM

No of CPU for Data Nodes | 3 CPUs

No of CPU for Name Node | 4 CPUs

Experiment 2.3: Study the impact of the input size

In this experiment, the throughput is reported. The same job should be run three
times with three different sizes of the input with the same other specifications, which

shown in Table 5.5.

1. One GB
2. 256 GB
3. Half TB

Table 5. 3: Testing Environment for Experiment 2.3

Constraints

Specifications

Input Data Varies

No of Virtual Machines 6 VMs

Disk Size per VM Could be from 120 GB - 255 GB
Memory (RAM) Size per | 3072 MB

VM

No of CPU for Data Nodes | 3 CPUs

No of CPU for Name Node |4 CPUs

Experiment 2.4: Study the impact of the number of input files

For this experiment, the same job should be run three times with three
different no of files. The total input size is equal for trials. Table 5.6 shows the
relation between number of files and the size for each file. Other specifications are

shown in Table 5.7.

Table 5.4: Relation between Number of Files and Size of Each Size

Size of Each File

No of Files

04 MB

65,536

! Refer to section 3.6.2.2.1

61

16 MB

16,384

64 MB

4096

Table 5.5: Testing Environment for Experiment 2.4

Constraints

Specifications

Input Data Small, about 2 MB — 1 GB per file
No of Virtual Machines 6 VMs

Disk Size per VM Could be from 120 GB - 255 GB
Memory (RAM) Size per | 3072 MB

VM

No of CPU for Data Nodes | 3 CPUs

No of CPU for Name Node | 4 CPUs

With the time limitation and problems faced with the cloud, see section
5.6.1.2, we could only do Experimentl and a part of Experiment2.2. The expected
output from experiment 1 was produced after the job was terminated successfully.

Figure 5.10: Snapshot of the Console for Running a MapReduce Job (1 GB- 5 Reducers)

Also, the output was examined by complete the whole process until using the
interface and it succeeded.

62

In Experiment 2.2, we could not use 256 GB as input data due to the same
limitations. Input data of 1GB, 5 GB and 25 GB could be tested. Regarding 1 GB
input data, when 1 reducer task was tested, the job was finished after 7 minutes,
resulting with 1 output indexed file. Using wave 1 that applied 5 reducer tasks
resulted with 5 output indexed files within 5 minutes and 25 seconds. But when 11
reducer tasks representing the wave 2 were used, the output was 11 indexed files for
the inputted 5G , and the output resulted within 37 minutes and 48 seconds. The
results for 1G input are shown in figure 5.11.

Reducer Task vs. Time

40 -

20 -

O T T T 1

1 Reducer Task 5 Reducer 11 Reducer
Tasks.. Tasks

Figure 5.11: Reducer Task vs. Time when data input is 1GB

While 5 GB was used as input data, when 1 reducer task was tested, the job
was terminated after 35 minutes. Using wave 1 that applied 5 reducer tasks finished
within 32 minutes. On the other hand, when 11 reducer tasks representing the wave 2
were used, the output resulted within 270 minutes. The results for 5G input are shown
in figure 5.12.

Reducer Task vs. Time

300 -
200 -

100 -
O T T T 1
1 Reducer Task 5 Reducer 11 Reducer
Tasks.. Tasks

Figure 5.12: Reducer Task vs. Time when data input is 5GB

63

Using 25 GB as input data, the indexing program using 1 reducer was
terminated after 12 hours, 23 minutes and 40 seconds, In addition to that, it was ended
within 2 hours,6 minutes and 4 seconds when 5 reducer tasks were used. But when 11
reducers were applied, the job finished after 4 hours and 4 minutes. The results for
25G input are shown in figure 5.13.

Reducer Task vs. Time

1000

500 -

o)/

0

1 Reducer Task 5 Reducer 11 Reducer
Tasks.. Tasks

Figure 5.13: Reducer Task vs. Time when data input is 25GB

Depending on the previous results, and referring to section 3.6.2.2.1 ,we think
that the used input data is not that enough to test the efficiency of using wave 2
compared to the efficiency of using wavel. So when we are going to complete the
testing plan, huge sets of data as described before will be used.

5.7 System Evaluation with Respect to its Impact on Computing
Environment and Society

5.7.1 Computing Environment

This project provides interactions between too many fields since it deals with
analyzing huge sets of data using a recent technology presented by the cloud
hardware. The designed project cloud be improved to work on oil and gas data sets
instead of using generated data. The suggested plan would contribute very much in
developing the abilities of relevant and important areas in search such as oil and gas
production environment using data mining in the designed cloud computing model.

The previously suggested idea could be applied if QP plan was achieved but
since the plan changed because Qatar Petroleum (QP) didn’t accept to provide their
sensitive data to the project, and the project become data analysis using MapReduce
Model on the cloud. This plan has a role in the field of cloud computing in Qatar and
specially Qatar University where it is a new implemented technology. Although there
are some limitations in using the cloud, over time it’s going to be more mature, so
specialized people can use more features and create new applications which can
contribute in many other fields in Qatar and the middle east. Furthermore, making a

64

small search interface from the indexed data contributes in the search field,
particularly if the project is improved to handle Arabic Language content.

5.7.2 Economy and Society

Since this project is implemented within the scope of some important areas
like cloud computing and searching, then it takes the impact and influence form those
areas in economical and social fields. Looking for the economical impact of the used
hardware in the project, blue cloud 1.6 brings hardware cost lower. A cheap terminal
with a keyboard and a mouse would be sufficient to perform the same tasks that
expensive large hardware requirements for each client including large memory and
fast CPUs can achieve. Cloud computing will also offer faster time to market:
companies will have the ability to deploy applications in small period of time without
changing the code ultimately which enables them to begin making a profit quicker.
Although cloud computing has these positive impacts, local industry is not ready yet
to adapt this kind of technology. Hopefully over time, it is expected to improve and
organizations will realize how much it can provide benefits and profits to their work.
In addition to that, this project has impacts on the society because it provides a small
user interface for searching which enables any user to search easily for certain word,
and it would provide higher impact if the system improved to deal with Arabic
Language.

Another benefit of this project is that it increases the collaboration between
multiple organizations in and outside Qatar (e.g., QU,CMU-Qatar, IBM organization).
As a result of that, efforts can be gathered to create new valuable projects. Finally,
this project is considered an important first step in exploring the cloud computing area
in Qatar University, Qatar, the gulf, and middle east.

65

CHAPTER 6
CONCLUSIONS AND FARTHER WORK

66

6.1 Introduction

This chapter presents project conclusions. Also, the chapter highlights the
challenges faced strengths, and weaknesses in the work done for the project. Finally
recommended improvements and further work are identified to add more value to the
project.

6.2 Main Conclusion

Data analysis using MapReduce programming model on the cloud project
highlighted how the cloud computing technology can influence the performance of
useful queries. In this project we were able to show the effectiveness of cloud
computing model on search applications using parallel indexing. Motivated by the
need to process large datasets, MapReduce programming model incorporates very
easy and clean concepts that programmers don’t have to worry about the complex
problem of designing, implementing and managing parallel code. Capitalizing on
these ideas, the project designs an affective and useful document search application
that employs an index file produced through parallel (MapReduce- and cloud- based)
processing of documents. A remarkable result that was experienced during the
system architecture is that even small design choices may significantly effect the
application performance. Accomplishing the previously described goals opened the
opportunity for effective collaboration between different universities (QU and CMU)
which was a great experience and a change for exchanging knowledge.

Although the project could achieve most of the its desired goals, extensive
performance testing did not have the chance to be completed and this was because of
the various problems described in the challenges section (6.3). However, as this senior
project is a part of a Qatar National Research Fund project supported under the
Undergraduate Research Experiences Program (UREP), we will have the chance to
continue this work and complete the performance testing. In addition to that, further
improvements can be put in consideration to improve the system outcomes in the
coming future.

6.3 Challenges and Anticipating Approach for each Challenge

This has been a very challenging open-ended but (at the same time) very
rewarding project. As part of our ongoing project and with a strong intention to
achieve the project objectives, a list of challenges from different perspectives was
confronted. Some problematic issues showed up during disparate project progress
stages. Nevertheless, in each and every challenging step, an alternative viable
approach was taken to proceed further in the project schedule.

The first major challenge associated with our project was exploring the cloud
computing model. In essence, the major concern was the project's main topic "cloud
computing" which is very recent field the world is exploring. In fact, our project is
considered as one of the first university experiences, in the gulf region, dealing with
cloud computing. Qatar University cloud was installed on the 13th of December 2009
and that leaded to another challenge: configuring the IBM cloud was at the end of the
semester and, as a result, we had to find and depend on an alternative resource, which

67

was the Carnegie Mellon University (CMUQ) cloud. Using CMUQ cloud was loaded
with several and long configuration steps to access. In addition to that, it handled
numerous unforeseen problems which consumed a lot of time to solve and was, as a
matter of fact, accomplished after more than one month of hard work.

After successfully accessing the cloud, the next challenge was exploring the cloud
environment and how it works including some technical issues and configuration
steps. Help and guideline resources were very limited and the online documentations
were the only possible and available help we could get. However, following the
online instructions was full of ambiguous parts and a lot of time was spent trying to
understand and figure out those parts.

The trouble with cloud computing is that it encompasses such a huge range of
technology offerings and one of them is Hadoop. After exploring the cloud
environment, the next task was to deal with the Hadoop platform. The aim was to
connect Hadoop with the Eclipse software development environment installed in our
machines and run a MapReduce project to experience the use of Hadoop in a
MapReduce model. This task was first accomplished in the CMU cloud because of
some technical issues with the QU cloud but also a large amount of time was spent
with Mr. Brian Gallew, the CMU system administrator, to make this thing works.
Switching to QU cloud, the greatest help of this part was from Mr. Alfredo
Cappariello, IBM cloud computing IT Specialist, who provided valuable support in
solving this problem by using IBM plug-ins instead of Apache plug-ins of the Eclipse
for the Hadoop. After this step was accomplished, configuring the installed Hadoop
for our purposes was the next challenge. Qatar University IT team did a great effort in
this regards, yet this also took a long period of time to be fixed.

The next point to be mentioned regarding this section is the source of data and
data collection part. First, historical databases generated by Oil and Gas Production
Systems (OGPS) by Qatar Petroleum (QP), since 30 years, was planned to be used to
answer useful queries about trends and patterns of gas reservoirs and oil fields using
the IBM Blue Cloud 1.6 at Qatar University. Unfortunately, this part of the project did
not complete successfully. The reason is the long time process it took to convince QP
Company to trust providing their sensitive data to the project. For that, it would be a
brave step from QP to offer their OGPS data to the private IBM cloud at QU. Our
alternative plan was to use a crawler code and run it to gather at least half terabyte of
data size. The crawler that we used was not properly documented, which was the main
reason for us to take a long period understanding it. However, with the help of Dr.
Sayed Ahmed Hussein, instructor at QU, we could fix the code and run it. The other
thing about the crawler is that it was very slow(400 megabyte per day at most), so we
thought of another alternative. Al-Jazeera Networks was the third option we had. This
company is rich of Arabic txt documents that can be beneficial to our project. Again
this process took longer than expected! Our last plan was to generate data by writing a
java code.

After generating the data, we decided to run it on our cloud (at least1GB). With
this large set of data, IT needed to generate a new project with new 8 VMs that
support at least 40GB but they did know how to set this new project because of lost of
cloud problems and miss-configuration.

68

6.4 Strengths and Weakness

Regardless of all the faced challenges during system development, there is a
list of strengths and weaknesses points we can spot the light on. Starting with the
strengths ones:

e One of the most important strengths in the project, which gives it a
distinguishable value, is that it collects a wide range of technologies and
standards. Looking deeply to the produced system, we can see that it
includes: cloud computing and virtualization technologies, MapReduce
programming model, Hadoop platform, data structure concepts, web
crawling field, Linux OS commands and various secured remote access
software (SSH, VPN...)

e The other strength point to be mentioned is applying a MapReduce
programming model on the QU cloud to produce a useful and effective
query which is indexing. With the help of MapReduce, processes are
distributed using Hadoop platform and as a result, they will be processed
in a very fast manner.

Moving now to the weakness points that the system suffer from is:

e The first point to be considered as a weakness one when designing the
system is the way of generating the data. After a long process of looking
for real data, we decided to work on generated data from a JAVA code.
Testing on those produced data was fine, but it would be more real life
relevant and realistic to test on actual data.

e As we did the system interface GUI components because of time
limitations, the produced system can’t be accessed only when it is
downloaded on the device. This access limitation can be overcome if
designing the system as a web application: the access can be from even the
web.

6.5 Suggested Improvement and Further Work

Even though data analysis of large set of data using a MapReduce model on
the cloud project achieved the desired goals and objectives, we have to point out that
there is some further work that can be done to improve the project. Our developed
application opens the door for future improvements that can be directed to three
different fields.

First, the improvements dedicated for us as the project developers:

e The data source would be replaced from generated txt files using
JAVA code to actual data from institutions or companies and change
the application to fed their needs and interests. A good idea is
applying the application on Arabic data sets and use it to enrich the
Arabic research field.

e The hash table used to store the indexed file use linear probing as a
collision solution. A better idea is to use hash table that solves the

69

collision using the double hashing to increase the application
performance.

In the Linelndexer code, a good practice would be changing the code
so the user can enter the number of mappers and reducers and input
and output paths. We can make it using GUI components or entering
the arguments from the main () method.

Another improvement in the search interface would be letting the
user enter the path of the serializable file from the search window.
The search interface is implemented using the GUI components. A
remarkable improvement would be changing the search interface to
be a web interface so the application can be accessed and shared

within the web.

Second, the improvements dedicated for the MapReduce developers:

In the map class inside the Linelndexer, the unused list words are
taken from a method. An improvement in this regards would be letting
the unused list take the unused words from a file so the user can
change it easily without the need to go back to the code. This idea
can’t be implemented in the map because reading from a file is not
supported by map class. It would be very helpful for programmers if
reading from file is supported by MapReduce algorithm.

The reduce method stores the output in a Text file. It would positively
affect the performance if we can store the output directly to a hash
instead of saving it in a txt file then change it to hash. Also this
feature is not supported by the MapReduce algorithm and it would
give programmers more freedom when programming applications.

Third, the improvements dedicated for the Qatar University cloud developers:

The QU cloud should be configured properly with stable state for
improving and encouraging future cloud researches.

The cloud features should be improved and be more usable. For
example, the cloud interface does not support 8 VMs each of 255GB
as Mr.Sajeer Thavot, Senior System Administrator in IT service,
stated. Another thing needed to be fixed is the error message that
appears in the cloud interface when there is no actual error which is
“server offline” message as shown in the figure 6.1

70

Hardware Coafigeratian

Base Image

@ wm-10-160-2-14

[l wm-10-160-2-17

U m- 10160215

- 18- 160-2-19
D wmi- 10-160-2-16
El wm- 10-160-2-18

Add [/ Remove Servers

300U (3 vepus) - 30TIME Mamory =

= 10.160.2.04

Of Typa e Bediat Linug 5.2
Podl [Type Ken System x [xen)

Adewn Password TIGRAFIK

30580 {3 vepus) - 3TZHE Memory -

® 10.060.2.07

05 Type Heen Redbtat Linug 5.2
Podl | Trpe Hen System & (wen)

Ader Password WELIRPOM

008 (3 vipus) - H0TIMB Memery -

14 10.060.2.15

05 Tyoa K RedHat Liniz 5.2
Podl [Type Hen System x {xen)

A Paidwird SONWSAK

3000 (3 vepus) - J0TIHB Mgy -
30080 {3 vepus) « 30TIME Memoey «
£.00PU [4 vepus) - JTIME Mamory -

Change Project Dates

25568 Disk (ind. S5120MB swap)

Hadoop 0.16.4
B Jarva SO 6

29568 Disk (ind. §120MB swap)
Hadoon 0.16.4
1M lava S0x 6

3568 Disk (ind. J120MB swao)
Hadoon 0,184
BM Java SOK 6

25500 Desk (ncl. 512000 swag)
255GH Disk (incl 5120MB swag)
255GH Disk (ind. §120MB swap)

Termisate Praject

X RodHat Linux 5.2

Her) RedHat Linux 5.2

server offiss

xer RadMat Linux 5.2

aerwer afffiae

gr Rt Linux 5.2
X RpdHat Linux 5.2
¥en RedHat Linux 5.2

Show Bepart

Q) Poweron

W Power oif

f Bmstart
actve

Q) Poweron
W P o

5 Bt

e
Achve

Refresh

Figure 6.1: The error message in the QU cloud

interface

71

References

[1] T.White, Hadoop The Definition Guide. United States of America: O’Reilly
Media ,2009,pp. 1-4,28 32,35

[2] ”Hadoop on Demand,” [Online document], 2008 Aug 20, [cited 2009
Oct],Available: http://Hadoop.apache.org/common/docs/r0.17.1/hod.html

[3] “Map/Reduce Tutorial,” [Online document], 2009 Sep 1, [cited 2009
Oct],Available:http://Hadoop.apache.org/common/docs/current/mapred_tutorial.html

[4] Carnegie Mellon University, Computer Science department, Power point
presentation for Dr.Majed,Lec-07,slide: 11-12,2010. Available:
http://www.gatar.cmu.edu/~msakr/15319-s10/lectures/lecture17.pdf. [Accessed May
15, 2010

[5] Carnegie Mellon University, Computer Science department, Power point
presentation for Dr.Majed,Lec-11,slide: 14-15,2010. Available:
http://www.gatar.cmu.edu/~msakr/15319-s10/lectures/lecture1l.pdf. [Accessed May
15, 2010

[6] Carnegie Mellon University, Computer Science department, Power point
presentation for Dr.Majed,Lec-17,slide: 07,2010. Available:
http://www.gatar.cmu.edu/~msakr/15319-s10/lectures/lecturel7.pdf. [Accessed May
15, 2010

[7] ”Cloud Computing,” [Online document], , [2009 Oct-2010 May], Available:
http://en.wikipedia.org/wiki/Cloud computing

[8] Jonathan Strickland, "How Cloud Computing Works,” [Online document], ,
[cited 2009 Dec 29], Available: http://communication.howstuffworks.com/cloud-
computing.htm

[91 ["VPN Web Access”, [Online document], , [cited 2009 Dec 17], Available HTTP:
http://www.alpha-apr.com/vpn/

[10] “CloudBerry Explorer for Amazon S3 Screenshots” ,[Online document],,[cited
2009 Dec 29], Available:http://www.softpedia.com/progScreenshots/CloudBerry-
Explorer-for-Amazon-S3-Screenshot-113427.html

[11] Tony Bain, ”What is Hadoop”, [Online document], 2008 Oct 15, [cited 2009 Dec
28], Available : http://blog.tonybain.com/tony bain/2008/10/what-is-Hadoop.html

[12] “Introduction to Cloud Computing Architecture”, [Online document],2009 Jun
[cited 2009 Dec 16], Available: http://www.sun.com/featured-
articles/CloudComputing.pdf

[13] “Amazon_VPC,” [Online document], , [cited 2009 Dec 28], Available:
http://en.wikipedia.org/wiki/Amazon_VPC

72

http://hadoop.apache.org/common/docs/current/mapred_tutorial.html
http://www.qatar.cmu.edu/~msakr/15319-s10/lectures/lecture17.pdf
http://www.qatar.cmu.edu/~msakr/15319-s10/lectures/lecture11.pdf
http://www.qatar.cmu.edu/~msakr/15319-s10/lectures/lecture17.pdf
http://en.wikipedia.org/wiki/Cloud_computing
http://www.alpha-apr.com/vpn/
http://www.softpedia.com/progScreenshots/CloudBerry-Explorer-for-Amazon-S3-Screenshot-113427.html
http://www.softpedia.com/progScreenshots/CloudBerry-Explorer-for-Amazon-S3-Screenshot-113427.html
http://blog.tonybain.com/tony_bain/2008/10/what-is-hadoop.html

[14] Platform as a Service,” [Online document], , [cited 2009 Dec 18], Available
HTTP: http://en.wikipedia.org/wiki/Platform_as_a_service

[15] ”Hadoop,” [Online document], , [cited 2009 Oct 10], Available:
http://en.wikipedia.org/wiki/Hadoop

[16] ” What is Hadoop? Big Data in the Enterprise”, [Online document], , [cited 2009

Oct 20], Available:
http://www.vmware.com/appliances/directory/uploaded files/What%20is%20Hadoop

-pdf

[17] “HDEFS Architecture,” [Online document],2009 Sep 1, [cited 2009 Oct 13],
Available : http://Hadoop.apache.org/common/docs/current/hdfs design.html

[18] ”MapReduce,” [Online document],2009 Sep 1, [cited 2009 Oct 13], Available :
http://m.blog.hu/dw/dwbi/image/2009/Q4/MapReduce_small.png

[19] "MapReduce,” [Online document], , [cited 2009 Dec 20], Available:

http://en.wikipedia.org/wiki/MapReduce

[20] ” 5-MapReduce Algorithms,” [Online document], , [cited 2010 May. 18],
Available: http://Hadoop.apache.org/common/docs/current/mapred tutorial.html

[21] [“Indexing definition,” [Online document],, [cited 2010 May. 18], Available:
http://www.google.com.ga/search?hl=en&safe=active&defl=en&g=define:indexing&
ei=BzjzS8PFKY|GrAfxtfnUDQ&sa=X&oi=glossary definition&ct=title&ved=0CB
MQKAE&safe=active

[22] [“Inverted Index,” [Online document],, [cited 2010 May. 18], Available:

http://en.wikipedia.org/wiki/Inverted index

[23] ” Amazon Elastic MapReduce”, [Online document], , [cited 2009 Dec 28],
Available HTTP: http://aws.amazon.com/elasticMapReduce/

[24] [’Amazon S3”, [Online document], , [cited 2009 Dec 28], Available HTTP:
http://en.wikipedia.org/wiki/Amazon_S3

[25] ”"Web Crawler”, [Online document], , [cited 2010 Apr 29], Available:
http://en.wikipedia.org/wiki/\Web_crawler

[26] "What is a Web Crawler”, [Online document], , [cited 2010 Apr 29], Available:
http://www.wisegeek.com/what-is-a-web-crawler.htm

[27] “WebCrawler”, [Online document], , [cited 2010 Apr 29],
Available(http://java.sun.com/developer/technical Articles/ThirdParty/\WebCrawler/

73

http://en.wikipedia.org/wiki/Hadoop
http://www.vmware.com/appliances/directory/uploaded_files/What%20is%20Hadoop.pdf
http://www.vmware.com/appliances/directory/uploaded_files/What%20is%20Hadoop.pdf
http://hadoop.apache.org/common/docs/current/hdfs_design.html
http://m.blog.hu/dw/dwbi/image/2009/Q4/mapreduce_small.png
http://en.wikipedia.org/wiki/MapReduce
http://hadoop.apache.org/common/docs/current/mapred_tutorial.html
http://www.google.com.qa/search?hl=en&safe=active&defl=en&q=define:indexing&ei=BzjzS8PFKYjGrAfxtfnUDQ&sa=X&oi=glossary_definition&ct=title&ved=0CBMQkAE&safe=active
http://www.google.com.qa/search?hl=en&safe=active&defl=en&q=define:indexing&ei=BzjzS8PFKYjGrAfxtfnUDQ&sa=X&oi=glossary_definition&ct=title&ved=0CBMQkAE&safe=active
http://www.google.com.qa/search?hl=en&safe=active&defl=en&q=define:indexing&ei=BzjzS8PFKYjGrAfxtfnUDQ&sa=X&oi=glossary_definition&ct=title&ved=0CBMQkAE&safe=active
http://en.wikipedia.org/wiki/Inverted_index
http://aws.amazon.com/elasticmapreduce/
http://en.wikipedia.org/wiki/Amazon_S3
http://en.wikipedia.org/wiki/Web_crawler
http://www.wisegeek.com/what-is-a-web-crawler.htm
http://java.sun.com/developer/technicalArticles/ThirdParty/WebCrawler/

[28] "Overview”, [Online document], 2010 May 15, [cited 2010 May 18], Available:
http://crawler.archive.org/

[29] "Web Crawling”, [Online document], , [cited 2010 May 18], Available:
http://www.ics.uci.edu/~djp3/classes/2009 01 02 INF141/Lectures/Discussion02.pdf

[30] "WebSPHINX: Project Web Hosting - Open Source Software”, [Online
document], , [cited 2010 May 18], Available: http://websphinx.sourceforge.net/

[31] B.Bruegge and A.H Dutoit, Object-Oriented Software Engineering: Using UML,
Patterns and Java, 2nd ed . United States of America: Pearson Education ,2004,pp.
125, 435-438,440,452,453,459,463,469

[32] Mr. Alfredo Cappariello, the cloud computing software engineer from IBM
Innovation Centre in Dublin,”IBM Training “. [.ppt]. Qatar University — IBM
Training , 2009

[33] ”Java Programming Language,” [Online document], 2010 May,[cited 2010 May
21], Awvailable: http://en.wikipedia.org/wiki/Java_(programming_language)

[34] “JDK”,[Online document],2001 June,[cited 2010 May 21],
Available:http://isp.webopedia.com/TERM/J/JDK.html

[35] “Cygwin”,[Online document], 2003 Sep, [cited 2010 May 21],
Available:http://searchenterpriselinux.techtarget.com/sDefinition/0,,sid39 gci922130,
00.html [36]

[37] Cloud Standards Effort Cloud Turn into a Dustup,” [Online document] , 30 April
2009 at 8:18, [cited:2010 may 21], Available
‘http://blogs.wsj.com/digits/2009/04/30/cloud-standards-effort-could-turn-into-a-

dustup/

[38] "DMTF Open Cloud Standards Incubator ,” [Online document] , 2010,
[cited:2010 may 21], Available http://www.dmtf.org/about/cloud-incubator

[39] ’Cloud standards overview ,” [Online document] , 17 May 2010 at 14:09 ,
[cited:2010 may 21], Available: http://cloud-
standards.org/wiki/index.php?title=Cloud standards overview

[40] "Eclipse (software),” [Online document] , 12 May 2010 at 18:28, [cited:2010
may 21], Available :http://en.wikipedia.org/wiki/Eclipse (software)

[41] ”Class JobConf,” [Online document] , 2009, [cited:2010 may 08],
Available:http://Hadoop.apache.org/common/docs/current/api/org/apache/Hadoop/ma
pred/JobConf.html#setNumMapTasks(int)

[42] R.Lafore, Data Structures & Algorithms in JAVA, 2" ed . United States of
America: Sams Publishing ,2003,pp. 212-213

74

http://crawler.archive.org/
http://www.ics.uci.edu/~djp3/classes/2009_01_02_INF141/Lectures/Discussion02.pdf
http://sourceforge.net/projects/websphinx/
http://websphinx.sourceforge.net/
http://en.wikipedia.org/wiki/Java_(programming_language)
http://isp.webopedia.com/TERM/J/JDK.html
http://searchenterpriselinux.techtarget.com/sDefinition/0,,sid39_gci922130,00.html
http://searchenterpriselinux.techtarget.com/sDefinition/0,,sid39_gci922130,00.html
http://blogs.wsj.com/digits/2009/04/30/cloud-standards-effort-could-turn-into-a-dustup/
http://blogs.wsj.com/digits/2009/04/30/cloud-standards-effort-could-turn-into-a-dustup/
http://www.dmtf.org/about/cloud-incubator
http://cloud-standards.org/wiki/index.php?title=Cloud_standards_overview
http://cloud-standards.org/wiki/index.php?title=Cloud_standards_overview
http://en.wikipedia.org/wiki/Eclipse_(software)
http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/mapred/JobConf.html#setNumMapTasks(int)
http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/mapred/JobConf.html#setNumMapTasks(int)

[43] "Hash Table,” [Online document] , 10 May 2010 at 10:21, [cited:2010 may 23],
Available: http://en.wikipedia.org/wiki/Hash table

75

http://en.wikipedia.org/wiki/Hash_table

APPENDIX A

Installation and Deployment Guide

This manual gives you a good idea about how to install and use the whole system.

Many preparing steps should be done before running the code.

Prerequisites

1. You have to have an account on the cloud. This account could be a customer

account or a an administrator/customer account.

2. Enter to the cloud interface using the user name and password given by the

cloud administrator (See figure A.1).

Cloud Computing Center

Welcome gign in to Cloud Management
« Project request interface for virtual servers User ID alokka

+ abstracts pools of virtual resources spanning multiple physical machines Password

s Manages reservations from multiple users and customers.

= Optionally installs additional software

+ Provides automatic real-time monitoring of project servers ~

+ Automatically provisions ¥en Virtual Machines and System p LPARs

* Easy to use Web2.0 User Interface

A solution by HIPOOS

Ul 1. 4-GA-dectf RM vi.4-GA -decdi

Figure A.1: Login to the Cloud Interface

Cloud Computing Center

e Bapirls Misigs Chou s s Vesein ki [l |
Project Summary Upeaming Events
< Ohew
E 1 acive
My Projects
font pre] & actve sarvers (& reguested) 01/20/09 to D3/07/10 eproved Active @ (Dates Changed)
Click on & prajoct ta ses cetals and reguest changes Reefresh | Reequest New Cloud Profect

B LA GA desl 1 ¥1.4.GA o

Figure A.2: Example of an Available Project in the Cloud Interface

A2

Cloud Computing Center

o Wekoome mokks |50t |

Project Detally
Project Name QU - stedent project

Customar QU - Mallubi Propect Type Madsop

Project State Active (Dates Changed) Fequested Server Count & active Server Count 6

StatDate D1-00-2000 EndDate 01-Jul-2010 Duration 273 days

Project Infrastructure

Name Mardwiare Canfiguration Base Image Status
0 vm-10-100-2-18 30CPU (3 veous) - 102448 Marmory - 3068 Disk (indl. 2048M8 swag) e FiedHat Lioux 5.2
0 vm-10-100-2-19 30CPU (3 veos) - 102448 Marmory - 3068 Disk indl. 2048M8 swag) e FiedHat Lioun 5.2
0 vm-10-100-2-15 30CPU (3 veos) - 102448 Mermory - 3068 Disk indl. 2048M8 swag) e FiedHat Lious 5.2
0 vm-10-100-2-17 30CPU (3 veos) - 102448 Mermory - 3068 Disk indl. 2048M8 swag) en RedHat Lirux 5.2
@ vm-10-100-2-14 30CPU (3 veows) - 102448 Marmory - 3068 Disk indl. 2048M8 swag) en RedHat Linu 5.2
@ vm-10-100-2-16 30CPU (3 veows) - 102448 Marmory - 3068 Disk indl. 2048M8 swag) en RedHat Livux 5.2

Add R

U1, GA dect6 M vT 4 G doct

Figure A.3: Available Project Recourses in the Cloud

If you have an administrator customer account, you can then request a new
project with the needed number of VMs and it should be custom hadoop, see

figures below (figure A.4, A.5, A.6)as an example of creating a project on the

cloud. Then the cloud administrator should approve the project.

Cloud Computing Center

o

Request New Cloud Project

1. Brovese avallsble infrastructure and choose dates 2. Soloct servers and configurs software 3. Subsmit roquest

Select Reservation Dates

-] burasion:[14 aine
o e o e e e e Ve Ve e e e e e e e e e e e e [[e e e e e e el e e
foe || o o8 || o8 || 19 (LN RFR (RN (KT R 1 RN E RIERIE-2 E:R KD 2§|M 2|2 (|20 | %0 || 31 |[e1 (|02 |03 |04 || oS || es | oF (|08 || o9 Iolll 12 || n
,

Avallable Resources
Xem System x Cloud Resources

Avallable/Total “ax fur single Va1

Storage £.45TB / 70078 553168

1.4 CA drcht AM v1_4 GA dect®

Figure A.4: Create a New Project (step 1)

Project Name: Test

Test Project
Description:
Your ¥irtual Machimes

Use e UM comigurator 1 38 servers 8 the project

Choose type of Preject: | Custom]

Select and Configure your Virtual Machines

1. Choese a Virtual Resource Cloud 3. cheose resources for your virtual machine(s)
Xen Systemx ¥
Bn Systet Joru 4 Memory Sterage
2. Choose an Image Absolute Max 11 7550 M 55168
Relative Max 11 7560 M5 55168
Xen RedHat Lingx 5.2 &
Chosen 2 024 L] 10
Image Details 168
Operating System v
RedHat 5.2 T &0
5
Recommended Resources
CPU Urits; 2
Mem: 1024M8
Disk: 1068 tsmber of YMs: © {maximum 46) next step >

Figure A.5: Create a New Project (step 2)

A3

5.

Description:

our Virtwal Machines

Choose type of Project: | Cusion

Select and Configure your Virtual Sachines

3. choose ressurees for your virtusl machine(s)

) enu

\\\\\\

6x0

4. choose amy softvare or additkonal aptions | * = reqs

= En

Acd VM 1o preject

Figure A.6: Create a New Project (step 3)

| f you do not have a customer account, you need to contact your cloud
administrator to create a new project.

At this point , the user should have a list of VMs each with an IP address that
can be subtracted from figure A.3. The user needs to initiate those VMs in the
host file found in C:\WINDOWS\system32\drivers\etc directory. (Figure A.7)

B Copyright (c) 1993-1999 Microsoft Corp.
#
Thi= i= a sample HOSTS file used by Microsoft TCP-IP for Windows.
#
Thi= file contain= the napping= of IF addresse= to host names. Each
entry should be kept on an indiwidual line. The IP address should
be placed in the first column followed by the corresponding host nane.
The IP address and the hos=t name should be separated by at lea=t one
=pace.
#
Additionally, comments (such as these) may be inserted on indiwidual
lines or following the machine name denoted by a '#' =ymbol.
#
For example:
#
102.54.94.97 rhino. acme. con # source server
38.25.63.10 H.ACE . COm # = client host
127.0.0.1 localhost
10.160.2.18 wm—10-160-2-18
10.160.2.19 wm—10-160-2-19
10.160.2.20 wm—10-160-2-20
10.160.2.21 wvm—10-160-2-21
10.160.2. 26 wm—10-160-2-26
10.160.2.27 vm—10-160-2-27
10 LAD G ERe I B T
L2,

<’f‘u.1su 33 wn-10-160-2-33
. i J\

VM IP address VM name

6.

7.

Figure A.7: Host file Sample
The user now needs to copy the hadoop directory of the cloud in his machine ,

then he needs to paste them in a known directory. After that, he needs to copy
this file in the eclipse plugins.
The user needs then to set the environment variable as follows (Figure A.8):

A4

10.

11.

0 2[x|

User wariables For 200857271

WYariable Walue N
HiEuaaR c:ljdevzo09thadoop-0.20.1
HADGOP_ZONF
Java_HOME ciiprogra~1\javaljres

Fr Ci\Program Filesi OpenyPMibin;c:lideve. ..

c:ljdevz009hadoop-0.20. 13 conf
TEMP Di\Documents and SetkingsiZ00657271..,, ™

| mew || Edt][Delete

Swstem variables

Yariablz Walue -
CLASSPATH CProgram Files)Javaljrel .6.0_07ib. ..
ComSpec CWINDOWS) system32icmd. exe

FP_MO_HOST_C... MO
KMP_DUPLICAT... TRUE
MKL_SERIAL YES v

mew | [Edt | [Delete |

[Ok][Cancel]

Figure A.8: Environment Variables

Next, the user needs to set up hadoop locations in Eclipse. For this step you
can follow the website http://v-lad.org/Tutorials/Hadoop/17%20-
%20set%20up%20hadoop%20location%20in%20the%20eclipse.html from 1
till 7. Note: in the steps, instead of putting the localhost, put the IP address of
the namenode (last VM in the cloud interface Figure A.3 has namenode
10.160.2.16 for example). Another point to be changed is replace the
Map/Reduce Master port number for 9101 to 9001 and DFS Master from 9100
to 9000.

The needed following steps are well demonstrated in the following link:
http://v-lad.org/Tutorials/Hadoop/23%20-%20create%20the%20project.html :
step 13 “create and run a test project” starting from step 1 till step 3.

After creating the MapReduce project, the user needs to copy the src directory
provided in the CD to his project src directory.

The user then needs to change the input and output files in the HDFS as he
wants and then run the Lindelndexer.java class provided in the CD. The code
should run as a MapReduce project on the configured Hadoop location (As
figure A.9 shows).

A5

http://v-lad.org/Tutorials/Hadoop/17%20-%20set%20up%20hadoop%20location%20in%20the%20eclipse.html
http://v-lad.org/Tutorials/Hadoop/17%20-%20set%20up%20hadoop%20location%20in%20the%20eclipse.html
http://v-lad.org/Tutorials/Hadoop/23%20-%20create%20the%20project.html

& Map/Reduce - Indexisrc/Linelndexer. java - Eclipse SDK

Fle Edt Source Refactor Navigate Search Profect Run Window Help

M- ® -0 (BHE S (S e

(7 Project Explorer £7 | (21 1 JTextFisidemo tFieldDemojava | [J] CopyOftiashjava | [Sortedlistjava | [J) Unusedistjava | 1) Linkijeva) Linelndexer java 12
~ B Copyofssh f e rrroy e
= DFSLocations =
o 513 Linelndeser toReturn.append [values.next () .toString())
) ashiabl 4 ool }//End of while
B
s ,—ZHads Table L serigieation //Write key and the list of files to the final oncput file
i Index 031§ SortedList_Data oupput.collect (key, new Text (coReturn.coString())):
BB [71 6 Simpleserialization }//End of Reducer
- [default pag [7 Hash }//End of LineIndexerReducer

0 copyof —

1) extr| (218 search Interface

I3 Linetnd: (21 Hash_ami

= 1J) LineIndy (5] Spl_String
£t

[tink.jay

7] Lirk1.ja & Open Run Dialog.

1] serislzs Organize Favorites...

[J] Sorteduist java

sen
The actual wain{) method for our progrem; this is the "driver” for the
* MapReduce job.

Al+shift+z, 1

Java Applcation

(String[] args) {
r of mep tasks and reduce tasks
//int mapTasks = 20:

@ Wii7 int reduceTasks = 11;
£ L] Unusedlist java 118 ficCreate client
%] book.gF _
119 JobClient client = new JobClienti):
®
EiL IRE System Library [jret] Wizo delCont conf = mew JobConf (LinelIndexer.class)
) X .
) xomlenc-0,52,jar - Ciijdev2009had 121 //Setup the configurations
) slF4jlogHLZ-14.Bujar - Ciljdev200 Wwizz conf. setdobName ["Line Tndexer ™)
) sFdj-api-1.4.3.jar '(‘\]_de"zmg\ha Wwiz3 conf.setOutputEeyClass (Text.class) @
(g serviet-api-2.5-8.1.14.jar - Cifjdey Wiza conf.setOutpurvValueclass (Text.olass) ;
E = I”'D'Z‘D‘E']a'_' c'\]dafmg\ha':‘”:: 125 //cont . setlumliap Tasks (mapTasks) ;
& ;‘34;1222 15"3::';‘“ ;;;;:9\; “Nlfe1ze cont, setlmBedneeTasks (11)
5 = S't'j‘a'lla_" (‘:\’ ? znn\ei E';'D W1z7 EilelnpucFormat . adadlaputPath (cont, new Pathi’/user/InputData-205File-eachs,DME-1G"))
) Junie3.8. 1 fa - Ciijdev 2009 hadoc 128 FileOutpurFormat. setOutpatPath(conE, new Path("/user/output-Farah-23-May-2010-8-10£1lesEache NE-1Reducer
) Jetty-uti-6.1.14.jar - C:|jdev2008|t
e | [8222 conf.sethapperclass (LineIndexNapper . class)
) Jotty-6.1, L far - Cilidev200Sthade |1 conf.setReducerClass (LinelndexReducer.olass) ;
o) Jets3t-0.6.1.jar - CHjdev2009hade 1
(£ Jasper-rurtime-S.8,12.jar - Ci\jdev: 132 client.setConf (conf);
4 Jasper-compiler-5.5.12.jar - Cijider s
S & hsq\dlﬁ:—i.f 'mngar.f:;];;:zhn?fv a v ¢
& ores '2'1'4 :‘ e - \da;n(135 JobClient . runfob(cont) ;
E) et e
= commans ‘”E '?‘TM'_‘ E“c: 136 } cateh (Exception e) §
E) Ioqqing-api- e
= commansioggng-apl-l. 0.4 jar 137 e.printStackTrace () ;
& commons-logging-1.0.4.jar - Ci\jde o ,
& commons-httpclent-3.0.1 jar - Ciije o
& mmmnr\s'e:.n |arrE‘\]dev2dDD9\?‘ i J//End of method main
E) codec- e
) cormons-codec-1.3.jai - Ciljdevz0 121 }//End of class LinelIndexer
& commons-ci-1.2.jar - Ctijdevz008 e
& hadoop-0.20.1-0ols.jar - CHjdever &
&

hadaop-0.20.1-core.Jar - CHijdevat o
< i 5 [Problems | ¥ Tasks | @ Javadac | (5" MapiReduce Lacations | B console 52

Figure A.9: Run the Linelndexer code on hadoop location.

12. If all the steps are followed as mentioned previously, the Linelndexer code
should terminate successfully and the output file will be created in the HDFS
location as the user specified the output path.

13. The next step is to upload the output file to the user local machine.

14. Then, the user needs to run the CovertTextToHash.java class and change the
input path to be the directory of the output file from Linelndexer code.

15. The output from the previous step will produce a .ser file. To continue the
steps till the end you can refer to User Manual in Appendix B.

A6

APPENDIX B

Guidelines for using the search interface

User’s Manual

In this ReadMe file, you will be able to know how to use the attached Ouput.ser and
Searching.jar files , so you can use the search interface designed for the project: Data Analysis
Using MapReduce Programming Model on the Cloud.

*hhkkhkkhkhkhkkhkhkhkkhkhkhkkhhkhkkhkhhkkhkkhhkkhkihhkhhhkhkkhhkhkhhkhkkhhkhkkihkhkkihhkhkkhhhkkhihkkhkhhkkhkkihkkhihhkkhihkhihkiiik

Before using the interface, you have to follow the next instructions:

1.Save the Output.ser file in directory C:/

2.Save Searching.jar in any directory you prefer.

3.0pen the command prompt, and change the directory to the one where you saved Searching.jar

4. To make sure that you are in the correct directory and path, use the command dir, and as
shown in figureb.1, you can see that it is the needed path where Searching.jar is found.

o

= Command Prompt

Divadir
Uoiume 1n drive D has no label.
Uolume Serial Humber iz 3IBC9-4648

ory of Dy

B @9:33 AN
B9 @3:11 PM
id:44 PH

1 File<s)

2 Divds)

ah
L232

- ol x

[»

s and Settings

ng.jare

bytes free

Figureb.1:dir command is used to see what is in the current directory

5.To open the runable Search.jar file use the following command

in figureb.2).

: java —jar Searching.jar (shown

B2

¢+ Command Prompt - java -jar Searching. jar lﬁﬁ

D:sodip
Uolume in deive D has no lahel.
Uolume Serial NHumber iz 38C9-4648

Directory of D:n

A9:33 AH <DIR> Documents and Settings
B3:11 PH <DIR> Jdev2B@9
18:44 PH 18,244 Searching. jar

1 Filed(s) 10,244 hytes

2 Divds) 46,.592,479,232 bytes free

D:s>java —jar Searching. jar

FigureB.2: use java —jar file.jar command

6. As a result for step 5, the interface will be opened to you, and now you can search for any
word you want.

KA A I I I I I I A I AAAAAAAAAAAAAAAAAAAA AR AR AAAAhhhhhhdhk
Way of using the interface itself:

1. You just have to enter the needed word that you are looking for in the field shown in red circle
in figure b.3.

B search m

Y Enter word to 'ﬁEEII'.‘liTD Search

close

FigureB.3:field to enter the needed word to search for

B3

2.Press on the button Search.
If the word exists, you will get the result that shows a list of ten names of files or less, where the

word has most frequency, and the frequency is attached to the name of file as shown in figureb.4.

And if the word doesn’t exist, “the word does not exist in the files” sentence is printed (Figure
B.5).

Search |Z| |E| g|

Enter word to search for |Hadoop

miost Freeguent Files:
file.td, 100}

filed 0.b4,100}
filek.bd, 50}

file7.bd, 50}

file7.bd, 50}
filed bt 6}

fileZ. bt 2}
filed.bet, 2}
file5.bat 1}
filed bt 1}

Figure B.4: Example of an output for available word in the files

S=Eg

Enter word to search for |work

The word does not exist in the files..

Figure B.5:Example of an output for unavailable word in the files

R R R R R R R R R R R R R R R R R AR AR AR R R R R R R R R R AR A R AR AR AR R R R R R R R R R R R R R R

B4

For any questions, contact us using the following e-mails:

200657271@qu.edu.ga

200652758@qu.edu.ga

200653782@qu.edu.ga

B5

mailto:200657271@qu.edu.qa
mailto:200652758@qu.edu.qa
mailto:200653@qu.edu.qa

APPENDIX C

Graphical User Interface
In this appendix you can see some snapshots for the designed interface:

Search

Enter word to search for

e
Search |-_| |E| [z|

Enter word to search for |Cloud

Most Freequent Files:
inputfile106 412468}
inputfile1 238412353}
inputfile1 &5 5412327}
inputfile1 26 8412317}
inputfile36.6d4,12312}
inputfile1 72 4412305}
inputfile147 1412304}
inputfile139.t4,12302)
inputfile140.t4,12302}
inputfile2a.td, 1228491

C2

Search

Enter word to search for |cloud

host Freequent Files:

inputfile? 06 td, 12468}
inputfile? 23 t4,12353}
inputfile! 65.t4,12327}
inputfile? 26.£4,12317}
inputfiled6 td, 12312}

inputfile? 72 td,123048}
inputfile? 47 td4,12304}
inputfile? 39 t4,12302}
inputfile? 406412302}
inputfile?s td, 12289}

Search

Enter word to search for |ports

The word does not exist inthe files..

APPENDIX D

Source Codes

1. ConvertTextToHashTable.java

1=/*File ConvertTextToHashTakle.java

2 * Author:Nadia Rashid Al-Ckkah

3 * Date : Friday. May l4th.zZ010

4 * Last Modificaticon: Friday. May 14th.2010

5 * Desgcripticon: This code iz used for converting a text file
6 * to hash table. The first word in each line is a keyword,
7 * and the rest of the line is the list of files that this

8 * keyword is exist in. After creating the hash table, it is
9 * gerialized te .SER file
10 =/
11

1Z=import java.io.*;
13 import Jjava.util.Hashtabkle;
14 import java.util.S8tringTokenizer;:

15

16 public class ConvertTextToHashTabkle |

17

18= public static void main{String[] args) throws I0OException {

19 ftring key = null:

=0 String walue = null;

21 Hashtakle<String, String> hashTakle = new Hashtable<String, String>():
= try {

23

= 4 /¢ Create FileInputStream object for the input file

25 FileInputStream fstream = new FileInputStream ("C:/part-00000"):
=2 6 /4 Get the object of InputS8treamReader

=hr InputStreamReader in = new InputStreamReader (fstream) :

=8 BufferedReader br = new BufferedReaderiin) ;

20 String strLine;

530 /¢ Read File Line By Line

31 while (i{=ztrLine = br.readLine{)) != null) {

32

33 StringTokenizer itr = new StringTokenizer(

54 strline.tolowsrcCase (), "+:W"WTL1EHFS: () -\hvtEhnhe ")
35 f/First token (first word in the line) is the key

36 key = itr.nextToken();

37

38 //Rest of the line is the list of files that this word is exist in.
30 StringBuilder toReturn = new StringBuilder () :

40 while (itr.hasMcreTokens () |

41 toReturn. append (itr.nextToken () .toeString ()) ;

4z toReturn. append ("##") ;

43 1/ /End of inner while loop

4 4

45 value = toReturn.toStringi)

45 fiadd the key and the list of filez to the haszh table
47 hashTable. put (key, value);:

45 1/ FEnd of outer while loop

40 /7 Cloze the input stream

50 in.close();

51 /4 Catch excepticon 1f any

52 } catch (Excepticn e) {

53 System. err.println ("Error: " + e.getMessage ()]

54 }

55 /¢ #erlalizing the hash table

56 try {

57 4/ Create FileOutputStream object for the cutput file

58 FileOutputf8tream fileOut = new FileOutputStream("C:/Output.ser™);
59 ObjectoutputStream ocut = new ObjectOutputStream(fileout) :
&0

=1 AfMWMrite Hashtabkle Object to the ocutput file

=y out.writeObject (hashTakle) ;

=53 J/"Cloge all ocutput streams

od out.close ()

55 fileout.close ()

3 } eatch (FileNotFoundException) {

a7 a.printstackTrace () ;

=] } catch (IOException e) |

k=] e.printStackTrace () :

70 }

1 1/ /End of method main

72 3/ /End of class ConvertTextToHashTable. java

D2

2. Generate.java

18/+

2 *
3 *
4 *
5 *
G *
7 *
g *

File: Generate.java

Authors: Amira Ghenai, Farah El-Qawasmi and Nadia Al-Okkah

Date : Bunday. May 1lé6th.2010

Last Modification: Saturday. May Z2nd.Z010

Reviewsd and Commented by: MNadia Rashid

Dezgcription: This code iz for generating 104, 357 files automatically
{about 512 GBs =0.5 TEs), with sequential naming. Each file is of =ize 5SME

9= import Jjava.ic.BufferedInputStream;
10 import java.ioc.DataInputStream:

11 import java.io.*;

12 import java.ic.FileInputStream:

13 import java.io.FileNotFoundException;
14 import java.ie.IOException;

15 import java.util.StringTokenizer;

16 import java.util.Random:

19 public class Generate |

/fwheel used te generate random numbers

static Random whesel = new Random () ;

public statie woid main(8tring(] args)] throws IOException |
//Create a File object and attach the path of the input file to 1t
File fileIn = new File ("C:\“textl.t=t"™);:

//Create a FileInputStream for the input file
FileInputStream fis = new FileInputStream (fileIn);

// Here BufferedInputStream iz added for fast reading.
EufferedInputStream bis = new BufferedInputStream(fis);
DataInputStream dis =new DataInputStreamibis);

String str = null;

int 1 = 05

//path: te save the cutput file path

String path;

//epecify the total number of files te be generated

int TotalWNumberofFiles= 104857;

String words[] = new String[500];

try {

/*gection l:Code from line 44 to line 59 is used to save the words in
the input file inte a array of Strings

=/
// dig.available() returns 0 if the file does net have more lines.
while (dis.available() = 01 {

/4 this statement reads the line from the file
str = dis. resdbine();
S/ Tokenizing the line and specify the delimiters

StringTokenizer itr = new StringTokenizer (str,
"oohEvnhr ") :
/4 itr.hasMoreTokens () returns 0 if the file does not have more
Sflines.
while (itr.hasMoreTokens (1) {
String = = itr.nextTeoken();
if (i l!= 500} {
words[1] = =x;
it+;

}//End of if conditien
1/ /End of inner while loop
}//End of outer while loop

/*@ection Z: Code from line 65 to 102 is used to generate the tent files.
*Words in the output file are combination of words from the input,
*"a a a a" and "A A A A"
*/
for{int fileCounter= 0;fileCounter<TotalNumber0OfFiles;fileCounter++)
{
//path for the cutput file

D3

&8 path="H:\\InputData-104652Files-cach5. 0MB\ \inputFile"

a9 +(fileCounter+li+".txt";

70 File fileOut = new File (path);

71 Writer output = new BufferedWriterinew FileWriter (fileout]);
V2 //Generate twe randem numbers for the word te e picked and the
73 Sinunber of words per line

74 int pickWords = wheel.nextInt (500] ;

75 int m;

76 //This loop iz used for inserting " a a & a a " in the output file
s for (m = 0; m < 59000; m++) |

78 output.write (" a a a a a ")

79 H

g0 //This leoep for inserting random words from the input

a1 //file to the output file

g2 for (m = 0; m < 550000; m++) |

83

04 output.write (words [pickWords]);

85 output.write (" ") ;

g6 pickWords = wheel.nextInt (500) ;

a7 }

a8 //This loop for inserting " A A A A A A " in the cutput file
a9 for (m = 0; m < 58000; m++) |

90 output.write (" A A A A A A ");

31 }

92 // dispose all the resources after using them.

93 fiz.close ()}

94 bis.close i) ;

95 dis.close ()

96 output.clese ()

97 +

98 } catech (FileNotFoundException e) |

99 e.printStackTrace [);

100 } catch (IOExzception e) |

101 e.printStackTrace [);

10z }

103 y//End of main

104 ¥//End of class Generate

3. Linelndexer.java

1= /*File LineIndexer.java

2 * Author: Mmira Ghenai, Farah El-Qawasmi and Nadia al-Okka

3 * Date :WMednesday. March 24th 2010

4 * Last Modification: Sunday. May 23th 2010

5 * Description: In this code, there is the map class, the reduce class and a mwain class.

G % In this LinelIndexer class, the map and reduce tasks are configured and called in the main class.
7 * Many configurations can be set. This main is the driver of this MapReduce project

g %

9

10= import java.io.IOException:

11 import java.util.Iterator;

12 import java.util.3tringTokenizer:

13 import org.apache.hadoop.fs.Path;

14 import org.apache.hadoop.io.IntlWritable;

15 import org.apache.hadoop.io.Longlritcakble;

16 import org.apache.hadoop.io.Text:

17 import org.apache.hadoop.mapred. FilelInputlormat;
15 import org.apache.hadoop.mapred.FileCutputFormat;
19 import org.apache.hadoop.mapred.Fileafplic:

Z0 import org.aspache.hadoop.wapred.JobhClient;

z1 import org.apache.hadoop.mapred. dJekcont:

22 import org.apache.hadoop.mapred. BspReducebasea:
23 import org.apache.hadoop.mapred. Bespper:

24 import org.apache.hadoop.mapred.utputCollector;
25 import org.apache.hadoop.mapred. Reducer:

26 import org.apache.hadoop.mwapred.Reporter:

27 import Jjava.io.*:

Z8
22 public class LineIndexer
30
31= public static class LineIndexMapper extends HapRedugsBsss implements
32 Mapper<LongWritable, Text, Text, Text> |
33 ffDeclare some reguired objects
34 private final static Text word = new Text():
35 private final static Text location = new Text():
36 private final static Text locFregquency = new Text():
37 private UnusedList my Unused List = mew UnusedListi]:
38
396 public void map (LongWritable key, Text wval,
40 CoutputCollector<Text, Text> output, Reporter reporter]l
41 throws IOException {
42
473 SortedlList wylList = new SortedList():
44
45 ffGet the file name |location) for each line
. 468 Filefplit filel3plit = (Filefplit) reporter.getInput3plitc();
g7 String fileMName = fileSplit.getPath() .getlame(]:
45 location.set (filelName) ;
49 fiCreate my_Useless _List, which contains sowe of words that are usually
50 ffnot palled in search such as "a", "ia"
51 wy_Unused List.createUselessListi):
52 S3tring line = wal.to3tring();
53 StringTokenizer itr = new StringTokenizer (line.tolLowerCase(),
54 Megek, [1:+0123456789 My IRESE e ()0~ <200, e el e M
55 SJtring x = null;
56 int fre = 0;
57 while (itr.hasMoreTokens()) {
&a ¥ = itr.nextToken():
58 /¢ To check if the word is not useless
&0 if (! {wy_Unused List.isInlListix.tolowerCase()))) {
61 /% To cheek if the word is already in myList or not
62 myList is & list contains all the words in this £ile with
83 the fregquency of each word in this file®/
64 if (mylList.isInListix)) {
55 J/IEf the word iz already in mylist, just increment its freguency
=11 fre = (mwylList.find(x)).Freequency;
a7 fre++;
[=1=] (myList.find(x)).Freegquency = fre;
[=4=] } else {
70 fre = 1;
71 myList.insert (x, fre):
e ¥
73 ¥
T4 +// end of while loop

75 Link temp = mylList.getFirstci):

TE while (temp !'= null) {

77 ¥ = temp.Word;

7a fre = temp.Freegquency;

7Y temp = Cewnp.next;

a0 word.set (x) 7

g1 locFreguency.set(location + "%"™ + fre):

g2 output.collect (word, locFregquency):

83 H

G4 /4 end of wap method

a5 +// end of LineIndexMapper class

=141

7= public static class LineIndexReducer extends MapReduseBsse implements
=1E] Raduser<Text, Text, Text, Text> |

g9 /*Each reduce task takes care of one key and collects all

a0 * the files that this key exists in.

a1 =

Qz= public void reduce (Text key, Iterator<Text> wvalues,

=k CutputCollector<Text, Text> output, Eeporter reporter)
a4 throws ICException {

aL Jifirst is a flag to not append a comwa before the first file
o6 boolean first = true;

a7 //toReturn is used to save the list of files for the same key
a3 StringBuilder toReturn = new StringBuilder():

a9 while (wvalues.hasNext ()] |

100 if [!first)

101 toReturn.append("”, ")

ioz first = false:

103 toReturn.append (values.next () .coS3tring())

104 3/ /End of while

105 J/Write key and the list of filez to the final cutput file
106 output.collect (key, new Text (toReturn.to3tringi)));

107 3/ /End of Reducer

108 y//End of LineIndexerBeducer

109

110= SEE

111 * The actual main() method for our program; this iz the "driver™ for the
112 * MapReduce job.

113 =

114= public static void main(3tring[] args) {

115 fiZpecify the number of map tasks and reduce tasks

116 flint wapTasks = 20;

pl17 int reduceTazks = 11;

118 J//Create client

119 JobClient client = new JobClient():

p1z20 JekbConf conf = new JobConf (Linelndexer.class):;

121 Jf%etup the configurations

plaz conf.setdJoblamwe ("Line Indexer™) ;

8123 conf . setCutputEeyClass (Text.class) ;

plad conf . setCutputvValueC lass (Text.class) ;

125 S foont . setiuMapTasks (mapTasks) ;

plza cont . setNunmBeduceTasks (11) ;

plz7? EilelInputFormat, addInputPath(cont, new Path("/user/Inputbata-2Z05File-eachs, OME-1G"));
128 FileoutputFormat.setOutputPath(cont, new Path("/user/output-Farah-23-May-2010-5-10filesEachiME-1Reducer™]) ;
plz9 conf . setMapperClass (LineIndexMapper.class) ;

130 conf.setReducerClass (LineIndexFeducer.class) ;

131

132 client.setConf (conf) ;

133

134 try {

135 JohClient. rundob(cont) ;

136 + catch (Exception =) {

137 e.print3tackTrace () :

138 i

139

140 1 /End of method main

141 }//End of class LinelIndexer

D6

4. Link

Jjava

1 // File: Link.java

2 // Uzed for SortedlList class

BV IETEFEIETEAET AP AP ET T ETIPE7 PP i Er il i iiiiiiirirntrirzy

4 e@lass Link

5 i
& public String Word; /7 data item
7 public int Freequency; // data item
a public Link next; /¢4 next link in list
9/ mmmm -
10= public Link(8tring word, int freequency) // constructor
11 i
12 Word = word; 4/ initialize data
13 Freequency = freequency; A7 ("newt' is automatically
14 } /7 set to null)
15 /f —mmm e
16 public Link() // constructor
17 i
18 Word = null; 4/ initialize data
19 Freequency = 0; S/ ("newt' iz automatically
20 }
21 /e
EEE public void displayLink{) /¢ display ourself
23 i
24 System. out.print ("{" + Word + ", " + Freequency + "} ");
25 }
26
27 e et T
2 ge public String teoString() |
=] return "{" + Word + "," + Freequency + "}";:
30 h
31 } /4 End class Linkl
1.java

1=/*File: linkl.java
2 *Usged for UnusedlList class.

3 */

4 e¢lass Linkl

5 {

& public String Word; // data item

7 /4 data item

] public Linkl next; £/ next link in list

9/ e
10= public Linkl{String id) // constructor

11 {

12 Word = 1d; // initialize data

13 S/ ("next' iz automatically

14 i /4 =et to null)

15 /f ——m e
16= public woid displayLink () /4 display ourself

17 {

18 System. out.print ("{" + Word + "} ");

19 h
20 v // end clazs Linkl

D7

6. SearchHash.java

/* File: 8SearchHash. java

* Author: Amira Ghenal,Farah El-Qawasmi and Madia Al-Okka
* Last Modification: Saturday.May 2Z2nd. 2010

=/

import java.ioc.*;

import Jjava.util.*;

import java.util.Hashtable;

public c¢lass SearchHash {
private static Hashtakle<String, String> hashTakle;
public SsarchHash() |
hashTakhie = new Hashtable<S8tring, String>i{);
H
public void printHash () {
System. out.println ("Printing out loaded elements...");

for (Enumsration e = hashTakle.keys(); e.hasMoreElements();) {
Object obj = e.nextElement {J;
System.out.println{”" - Element{" + obj + ") ="

+ hashTakle.get (obj));
}
}
//To add an element to a HashTakle object
public void put (8tring K, String V) |
hashTahklie.put (K, V);:
}
public Boclean containsKey (String k) |
return (hashTable.containsEey(k)):
}
public String get (String k) |
return (hashTable.get (k)):
}
public #tring word searchi8tring word) {
SortedList freFile = new SortedList () ;

if (!l (hashTable.containsKey (word.toLowerCase ())))
return ("The word does not exist in the files.. ™)
else |

//If the word exists in the hash takle,
//get each file with its frequency
String ® = hashTakle.get (word.tolowerCase ());
StringTokenizer itr = new StringTokenizer (x.toLowerCase (),
while (itr.hasMoreTokenz=i()) |
String fileFree = itr.nextTokeni):
String [] temp=new Stringl[Z];
temp = fileFree.split ("%");
int fee = Integer.parselIntitempl[l]):
freFile.insertFres (tenp[0], fee):
i
if (freFile.numOfElement () <10)
{

) 5

return (freFile.displayMostFreequent (freFile. numOfElement ()))

}
else
return (freFile.displayMostFreequent (10));
}
¥
//This method is used for de_serialize the HashTable,
//i.e.convert (L SER file)to a Hashtakles cobject
public void de_serialize()
i
try |

FileInput8tream fileIn = new FileInputfStream ("C:/Output.ser”);

OkjectInputftream in = new OkjectInputftream (filelIn);
//Load Hashtable Obkject
hashTakle = (Hashtablelin.readObject():
//Clese all input stresms
in.close () ;
fileIn.cloze () ;

} cateh (ClassNotFoundException &) |
e.printStackTrace () ;

} cateh (FileNotFoundException e) {
e.print8tackTracs () ;

} catch (IOException =) |
e.printStackTrace () ;

D8

74
75
T8

}
v/ /End of class
v/ /End of class SearchHash

D9

7. Searchlinterface.java

1=/* File: SearchInterface.java
2 * muthor: Amira Ghenal and Farah El-Qawasmi
3 * Last Modification: Saturday.May 22Znd. 2010
4 =/
__g-import Jjavax.swing. *;

& import java.awt.*;

7 dimport java.awt.event.?*;

g

9 public class SesarchInterface extends JFrame {

10 //Clags Declarations:

11

1z /fdisplays the field where the user enters the word

13 JTextField JjtfTentl;

14

15 // dizplays demo string

16 JTexthArea textAreal;

17

18 //the user entered word

19 gtring demo;

20

z1 /7 create box for displaying the most freeguent files for the selected word
2z Box box = Box.createHorizontalBox();

23

24 //display to the user what to do

25 JLabel labelZ;

26

27= public SearchInterface() |

28 /fcall the super class constructor

29 super ("Search") ;

30

31 //eet the window size

3z zetSize (500, 400);

33

34 /*This =tep iz te set the windew in the center of the screen®/
35 Toolkit toolkit = getToolkit ()

a6 Dimension size = toolkit.getScreenfize ()

37 setlocation(size.width / 2 - getWidth() / 2, =ize.height / 2
38 - getHeight () / 2);

39

40 Container container = getContentPane ()

41 container.setLayout (new FlowLayout ());

42

43 // create temtareal

44 textAreal = new JTextArea (demc, 15, 20):

45

4G // add =croll pane to the textareal

47 box.add (inew J3crollPane (textAreall);

48

49 /4 the bellow icon ig to display a picture. Note : the picture should be in
50 Icon bug = new Imagelcon(getClass ().getResourcse ("book.gif"));
51

52 /4 JTLabel constructer with string, Icen and alignment argumsnts
53 label?2 = new JLabkel ("Enter word to search for ", bug,

54 SwingConstants. LEFT) ;

55

=15 // zet labelZ zize

57 labelZ.zetSize (10, 100

58

59 // add lakelZ to JErame

a0 container.add (lakbelZ2) ;

61

62 // create search button and set its size and action listener
63 JButton search = new JButton ("Search");

64 sgearch.getBounds (150, &0, 80, 30):

G5 gearch. addActionLictener (new ActionlListensr () |

Ba= public void actionPerformed (ActionEvent event) |

67

aa // when button clicked, create a searchHash object
=] SearchHash h = new SearchHash();

70

71 //zerialize the haszhTakle

72 h.de_serialize():

73

74 // put the inserted user words in the method

D10

75 String word = JtfTextl.getText ();

TA demo = h.word_search (word.toLowerCase ()) ;

77 texthAreal.setText (demo) ;

78 i

79 i

a0 /4 create a button te olose the the interface and =zet it'sz =ize
81 JEutton exit = nmew JEutton("clo=e™):

82 exit.setBounds (50, 1500, 80, 20);

83= exit.addActionlListener (new ActionListener () |

g4= public void actionPerformed (ActionEvent event) {
85 Syastem. exit (0);

a6 }

g7 [

a8

a9 JtfText]l = new JTextField(10);

a0 /7 add JtfTextl to JFrame

91 container.add (JtfTextl) ;

9z // add szearch button to JFrame

93 container. add (zearch) ;

94 // add box to JErame

95 container. addibox) ;

95 // add exit button to JFrame

a7 contalner. add{exit);

93 // =et the JFrame as wvisible

99 zsetVizible (true) ;
10ad }
101 //Main Program that starts Execution
102& public static void main (String args[]) {
103 SearchInterface test = new SearchInterface();
104 teSt.SetDefaultCloseOperation(JFrame.EXIT;ON_CLOSE);
105 i

106 3// End of class TextFieldTest

D11

8. SortedL.ist.java

1=/* File: SearchHash.java
2 % Author: Amira Ghenail,Farah El-Qawasmi and MNadia Al-okka

3 * Last Modification: Saturday.May ZZnd. 2010
4 */
5 public class SortedList {
=] /¢ reference to first item
7 private Link first;
g
o // Constructor
10= public SortedList ()
11 1
1z first = null;
13 }
14
15= public boolean isEmptv () // true if no links
16 {
17 return (first == null);
15 i
149
20 /7 Insert, 1n order
21= public woid insert (String word, int freequency)
22 {
23 // make new link
24 Link newlLink = new Link{word, fresquency);
25 Link previous = null;
24 // start at first
27 Link current = first;
248
29 A/1nt1l end of list,
30 while ({current != null)) {
31 int Return = word.compareTo (current.Word)
32 if (Return > 0 {
33 previous = current;
34 current = current.next; // go To next item
35 1 else
36 break;
37 i

D12

100
101=
10z
103
104
105
1l0a
107
108

if (previouz == null)
first = newlLink;

else
// not at beginning
previous.next = newLink:
newlink.nsxt = current;

} /4 end insert ()

{

i
i

i
i

public wvoid insertFree (String file, int

Link newlLink = new Link (file, key);

return (tmp != null):

/¢ Delete and return first link

public Link remove ()

{ // (assumes non-empty list)

Link temp = first; // save first
first = first.next; // delete first

return temp; // return value

public boolean isInlist (String e1)

Link tmp;

for (tmp = first; (tmp != null s&

return (tmp = null);

/*gets the link not search if there*/

public Link find(String key)

at beginning of list
first ——-» newlink

ald prewvious --> newlink

newlLink --> old current

key) /7 insert,

// make new link

Link previous = null; /7 start at first
Link current = first;
/4 until end of list,
while (current |= null && key < current.Freequsency)
{ /¢ or key » current,
previous = current;
current = current.next; // go to next item
¥
if (previcus==null) /¢ at beginning of list
first = newlLink; Jf first --> newLink
else /¢ not at beginning
previcus.next = newlLink; /i old prev --» newlLink
newLink.next = current; /¢ newlLink --»> old currnt
v /4 end inzert)
ffmmmm i ———————————
public boolean is=InListFree (int e1) {
Link tmp;
for (tmp = first; (tmp != null && ! (tmp.Eresquency==(el)));

I {tmp.Word. equals=s(el)));

{ /4 lazsumes non-smpty list)

Link current = first;
while (! (current.Word. equals (key))}
{

if{current.next == null)
return null;

else
current = current.next;

i
return current;

public int numOfElement ()
i Link temp;
int i1=0;

i

i
i
I
I

i

start at "first’
/4 while no match,

if end of list,
didn't find it

not end of list,
go to next link

found it

for (temp=first; temp!=null ;temp=temp.next)

i++;
return 1i;

in order

tmp = tmp.next):

// find link with given key

tmp = tmp.next)

D13

108= public void displayList () {

110 System. out.print ("List {first-->la=st)i: ");

111 Link current = first; // start at beginning of list
11z while (current != null) // until end of lis=t,

113 {

114 current.displayLink (); // print data

115 current = current.next; // move to next link
118 }

117 System. out.println ("");

118 B

119

120 o
1z21= public String displayMeostFreequent (int s=ize) |

122 /i S8ystem. out. print ("List (first-—->last): ");

123 Link current = first; // start at beginning of list
124 String tmp="Most Fresgquent Files=: \n":

125 for (int i=0;i<=size;i+t+){

126 tmpt+=current.toString{)+"\n"; // print data

127 current = current.next; // move to next link
128 i

129 return (tmp);

130 B

S H I .l L A
-132e public String toString() {

133 Link current = first;

134 String link="Sorted List: ";

135

138 while (current != null) // until end of lis=t,

137 {

138 link+=current.toString()+"\n"; // print data
139 current = current.next; // move to next link
140 t

141 return link:;

14z B

143 e
144= public Link getFirst({) |

145 return first;

146 }

147

148 public void setFirst (Link first) {

1449 this.first = first;

150 h

151 } // end clazs SortedList

D14

9. UnusedList.java

1=/* File:UnusedList. java

2 * author :amira Ghenai

3 % Last Medification: Saturday.May Zlst. 2010
4 */

S-import java.ic.BufferedReader;

& import java.ic.FileReadsr;

7 import Jjava.ic.IOException;

g

9 public class UnusedList |

10 private Linkl first; // reference teo first link on list

11

12 S
13= public UnusedList () // constructor

14 {

15 first = null; // no links on list yet

1a i

17 A e
18@ public boolean isEmpty () // true if list is empty

19 {
20 return (first == null):
21 i
22 fl e -
23
24= public Linkl deleteFirst() // delete first item
25 { // [assumes list not empty)
26 Linkl temp = first; // =ave reference to link
27 first = first.next: // delete it: first-->old next
28 return temp; // return deleted link
29 1
30 Jl e -
31= public wvoid displayList () |
3z System, out. print ("List (first-->last): ");:
33 Linkl current = first; // =start st beginning of list
34 while {(current != null} // until end of list,
35 {
36 current.displayLink{); // print data
37 current = current.next; // move to next link
38 i
39 System. out.println ("");

40 h

41

42 A
43

44= public woid insert (5tring word) // insert, in order

45 1

1@ Linkl newlLink = mnew Linkli{word); // make new link

47 Linkl previcus = null; // start at first

45 Linkl current = first;

49
50 // until end of list
51 while ((current != null)) {
hapes int Return = word.compareTo (current.Word); // or key > current,
53
54 if (Return > 0) {
55 previous = current;
565 current = current.next; // go to next item
57 + else
58 break:
59 B

=] if (previeus == null) // at beginning of list

[=h8 first = newlLink; // first --> newlLink

62 else

&3 // not at beginning

64 previceus.nerwt = newlink; // old prev --> newLink

&5 newLink.next = current; // newlink --» old currnt

=13

a7 } /4 End insert ()

&8 f Y m e -

D15

aY=
70
71
Ta
]

=]
Ta

Ta
79
ao

gz2e=
g3
gd
85
ga
a7
a8
g9
a0
91
N

94
95=
98
a7
98
99
100
101
102
103
104
105
106
107
104
108
110
111
112
113
114
115
1lé
117
118
1189
1z0
121
122
123
1z4
125
126
127
128
1259
120
131
132
133
134
135
136
137
138
1359
140
141

public boolean isInlist (String el) |

Linkl tmp:
for (tmp = first; (tmp != null && ! (tmp.Word.equals{el))); tmp = tmp.next)
return (tmp != null);

IE
* Thosze two methods are tested for the indexing code but the first one does
* not work kecause in the map, there iz no BufferReader used, =o it will
* ignere it and the method won't work but the zecond one works correctly
*/

public void create_unused words () |

try ¢
BufferedReader in = new BufferedReader (new FileReader(

"orfdatal.txwt"))
String str;
while ((str = in.readLine()) != null) {
insert (2tr);

}
in.close () ;

} eateh (I0Exception &) |

l

}

public void createlUselessList () {
J* from file unstead form "string™ */
/% 50 value */
insert ("the") ;

inzert ("of ") ;
inserti{"to™);
insert ("and");
inzert ("a"):

inzert ("in");
insert{"is");

insert ("it ") ;
insert {"yvou");
insert ("that");
insert ("he");
insert ("waz");
ingert ("for"):
insert ("on") ;
insert ("are");
insert ("with"™) ;
insert ("az");
ingert ("i");
ingert ("thiz=") ;
insert ("hizs");
insert ("they");
insert ("be");
insert ("at");
insert ("have™);
insert ("from") ;
insert ("or") ;
ingert ("had"):
ingert ("by ") ;
insert ("but ™) ;
insert ("there™) ;
insert ("we") ;
ingert ("can")
insert ("all™);
insert {"up");
insert ("an");
insert ("she") ;
ingert ("if");
ingert ("will™) ;
insert ("so");
insert ("as");
insert ("here");
ingert ("my ") ;
insert ("no");
ingert ("on™:

D16

insert ("althought");
insert ("am") ;
insert ("uz");
insert ("it");
ingert ("not");
insert ("oh") ;

1/ /End of method createUselessList ()
}//End of class UnusedList. java

D17

APPENDIX E

Block 3 in Generate-Part 2 Flowchart

m < 59000

Yeyg
Print to the

output file the
"aaaaa "

m ++

Figure E.1:Block 1 in Generate-Part 2 Flowchart

E2

m < 550000

Yes

Print to the output
file the
words[pickWord]
followed by a space

pickWord=
number between
O and 499

.

Figure E.2: Block 2 in Generate-Part 2 Flowchart

E3

m < 58000

Yes|
Print to the

output file the
"AAAAA "

m ++

Figure E.3: Block 3 in Generate-Part 2 Flowchart

E4

APPENDIX F
MEETINGS AND BULLETIN BOARD

hé dools

QATAR UNIVERSITY

Meeting no.1:
Tuesday 6™ .October.09 — (09:00-10:00 am)

= |tems discussed:
O The idea of the project
o The main tasks for the project.
O General idea about the data mining and map reduce.
o Working on the Cloud in Carnegie Mellon
» Tasks agreed for next meeting:

e Write the UREP project proposal Amira

e Searching and reading about the data mining and map reduce
o Techniques, algorithms and applications Elarg_h
adia

= Attendance (Students):

Amira- Farah- Nadia

= Others

o Dr. Malluhi sent an email to QP to have the permission to get the data and

to arrange meeting with them.

o Hardware of the cloud was ordered to be installed in Qatar university

(QU).

F2

hé dools

QATAR UNIVERSITY

Meeting no.2
Tuesday 13" .October.09 — (09:00-10:00 am)

= |tems discussed:
o Downloading SSH program to login into the cloud (PUTTY)

= Tasks completed:

Task For

e Reading many articles and power point presentation about data mining Amira
and map reduce and made some notes.

e Filing the project proposal template (not complete) Ear:_h
adia

= Tasks agreed for next meeting:

Task For

e Logging to the cloud using the accounts and passwords given from Amira
e To be familiar with the cloud and how to run programs on it

 Reading more about the map reduce and data mining Earg_h
adia
= Attendance (Students):
Amira- Farah- Nadia
= Others
o User names, passwords and login instructions has been sent to the students
emails.

F3

hd dcols

QATAR UNIVERSITY

Meeting no.3:
Wednesday 28" .October.09 — (2:00-2:30 pm)

= |tems discussed:
o project proposal
o Running the browser in the cloud
o Map reduce environment.

» Tasks completed:

Logging to the cloud using the accounts and passwords. Amira
Filing the project proposal template.
Some reading about map reduce and data mining Farah
Nadia
» Tasks agreed for next meeting:
Task For
Run a map reduce example, then try to modify it and run it again Amira
To be familiar with the WEKA software
Farah
Nadia

= Attendance (Students):

Amira- Farah- Nadia

= Others
o Drop box is used to upload the needed files for the project easily.

F4

hé dools
QATAR UNIVERSITY

Meeting no.4:
Tue 3rd .November.09 — (09:00-10:00 am)

» |tems discussed:
o The meetings IBM.
o Problems in running a java program importing a Hadoop or weka
packages
o Proposal of the project is completed and submitted.

= Tasks completed:

Task For
e Exploring WEKA software Amira
¢ Finding many MapReduce examples
Farah
Nadia
= Tasks agreed for next meeting:
Task For
e Contacting with Mr.Shuja to access the ssh in the QU campus Amira
e Contacting with CMUQ to use the URL
e Installing the Hadoop package Farah
e Run a map reduce example, then try to modify it and run it again Nadia
e To be familiar with the WEKA software

= Attendance (Students):

Amira- Farah- Nadia

= Others
o We contact Dr. AbdulKarim Errdai to have a help with Hadoop.

F5

QATAR UNIVERSITY

Meeting no.5:
Tuesday 17 .November.09 — (09:00-10:00 am)

» |tems discussed:
o Qatar Qloud Hardware (installation on 6" -7", Dec.[09
Training and tutorial on 8™-9™-10" Dec.2009
Meeting with Dr. AbdulKarim Errdai and some useful information
Contacting QP and the preparation of some presentations.
Plan “B”: if no data is available from QP, an indexing procedure may be
discussed as a plan “B”
o Many Problems in installing the Hadoop package and interacting with
eclipse

= Tasks completed:

o O O O

e Contacting with Mr.Shuja to access the ssh in the QU campus Amira
e Contacting with CMUQ to use the URL
e Installing the Hadoop package Farah
e Trying to run a MapReduce example Nadia
» Tasks agreed for next meeting:
Task For
e Complete installing the Hadoop package and run the examples included | Amira
in the package.
Farah
Nadia

= Attendance (Students):
Amira- Farah- Nadia

F6

QATAR UNIVERSITY

Meeting no.6:
Tuesday 24™ .November.09 — (09:00-10:00 am)

= |tems discussed:
o Contacting QP and some meetings.
o Many Problems in installing the Hadoop package and interacting with
eclipse

» Tasks completed:

Task For

e Installing the Hadoop but with many problems such as how to connect Amira
our virtual machine with our real machine, and this solved by using the

ssh (Tunnelier) Far;h
Nadia

» Tasks agreed for next meeting:

Task For

e Complete installing the Hadoop package, solving the remained problems | Amira
with Mr.Brian Geek(CMUQ) and run the examples included in the

package. Farah
Nadia

= Attendance (Students):

Amira- Farah- Nadia

= Others:

The meeting with Mr.Brian is arranged to be on Tue. 24™ Nov.2009 at 12:00pm in
CMUQ compus .

F7

QATAR UNIVERSITY

Meeting no.7:
Tuesday 8™ .December.09 — (09:00-10:00 am)

= |tems discussed: (should be modified)
o Discuss some points regarding the first senior project report such as the
problem statement, the goals and main objectives, the project scope.
o Take the decision that QGPS data from QP will not be used and another
data sourse should be found.
o Plan B: Getting Data from Other Resource (e.g.: United Nation
Documents)

= Tasks completed:

Task For

e Finishing installing the local Hadoop. Amira

e Visit Mr.Brian Geek(CMUQ) and access Hadoop of CMU cloud. Earah

ara
Nadia
» Tasks agreed for next meeting:

Task For

e Look and search for other data recourses: United Nations. Amira

e Solve the Eclipse plug-ins problem of MapReduce on the Eclipse

environment. Fara_h
e Start Documentation of the project. Nadia

= Attendance (Students):

Amira- Farah- Nadia

F8

hé asols

QATAR UNIVERSITY

Meeting no.8:
Tuesday 13" .Decembre.09 — (09:00-10:00 am)

= [tems discussed: (should be modified)

o Discuss some points regarding the first senior project report.

= Tasks completed:

Task For
e Completed some documentation of the project such as the cloud and Amira
Hadoop literature.
Farah
Nadia
= Tasks agreed for next meeting:
Task For
e Continue Documentation of the project. Amira
e Attend the IBM training which will be scheduled on the 15" of
December. Farah
Nadia

= Attendance (Students):

Amira- Farah

F9

Jhé anols
QATAR UNIVERSITY
Meeting no.9:
Sunday 21°* .February.10 — (11:00-12:00 am)
» [tems discussed:
o The accounts status in the QU cloud and the VPN configuration.
o Setting up the meeting time for this semester.
o Discussing some issues regarding the indexing concept.
©)

How to gather 1 TB of data: the suggested solusion was a crawler

program.

o The WordCount code :discuss some problems in the code and how to run

it on the QU cloud.
= Tasks completed:

e Decided to work on the indexing example for MapReduce. Amira

e Attended some lectures in the CMU university for the course Fara_h
“Introduction to Cloud Computing” presented by Dr.Majd F.Sakr. Nadia

= Tasks agreed for next meeting:

Task For

e Contact Mr. Shuja Ashfaq for setting the VPN to connect to the cloud Amira
outside the campus. Fara_h

e Contact Mr. Zeyad Ali to see the accounts status in the QU cloud. Nadia

e Fix the problems in the WordCount code and run it without the use of the
QU cloud.

e Start reading about the indexing algorithms, find some examples and
understand and try to run them.

e Understand the crawler java code and run it correctly to start gathering
the needed amount of data.

= Attendance (Students):
Amira- Farah- Nadia

= Others:
Contact Dr.EISayed to get a help with the Crawler4j code

F10

Jhé anols
QATAR UNIVERSITY
Meeting no.10:
Sunday 28™ .February.10 — (11:00-12:00 am)

= |tems discussed:

Crawler program is working successfully

Failed to connect the cloud to run the MapReduce program
WordCount.java without errors

Cloud accounts are customer accounts, cannot create projects
Emailing Mr.Zeyad Ali to create a Hadoop project

O O O O O O

= Tasks completed:

Preparing the senior project computer to run the crawler program on it

Task For
e Crawler program worked successfully. Amira
e Contacted Miss Sara(IT) to prepare the senior project computer to run the Fara_h
crawler program on it. Nadia
e Get customer accounts on cloud
e Found some useful papers about indexing with MapReduce algorithms
» Tasks agreed for next meeting:
Task For
e Contact Mr. Shuja Ashfaq for setting the VPN to connect to the cloud Amira
outside the campus Farah
e Try again to connect the local Hadoop with eclipse to run the WordCount | Nadia

example

= Attendance (Students):
Amira- Farah- Nadia

F11

haé anols
QATAR UNIVERSITY
Meeting no.11:
Sunday 7" .March.10 — (11:00am-12:00 pm)
= |tems discussed:
o Buy hard disks of 1T.
o Problems with connecting cloud Hadoop with local eclipse.

» Tasks completed:

Task For

e VPN is working properly. Amira
e Connect local Hadoop with eclipse but with errors. Fara_h
e Partially connect cloud Hadoop with local eclipse (with errors). Nadia
e Started reading some papers about indexing.

= Tasks agreed for next meeting:

Task For

e Try to solve the password problem faced with connecting eclipse with Amira
cloud Hadoop by starting each node individually. Farah

e Look for more simple and specific published scientific papers about Nadia
indexing using MapReduce algorithm. (suggested search engine: Lucene)

= Attendance (Students):
Amira- Farah- Nadia

F12

QATAR UNIVERSITY

Meeting no.12:
Thursday 11" .March.10 — (08:30-09:00 am)

= |tems discussed:
o Problems with connecting cloud Hadoop with local eclipse.

o Difficulties in finding two compatible versions of Hadoop and eclipse

o Suggested solutions in different web sites.

= Tasks completed:

e Try to solve the problems with the local Hadoop (solved partially) Amira
e Try to connect two different version of Hadoop(0.16.4) and eclipse(3.4) Fara_h
errors in Java scripts in this version of Hadoop. Nadia
» Tasks agreed for next meeting:
Task For
e Send an e-mail to Mr.Brian to give us the Hadoop folder used in the Amira
CMU with the eclipse used there. Farah
Nadia

e Request new accounts in the CMU cloud with a project with specific
requirements and also new accounts in the Hadoop server of the CMU

= Attendance (Students):
Amira- Farah- Nadia

F13

QATAR UNIVERSITY

Meeting no.13:
Sunday 14™ .March.10 — (11:00am-12:00 pm)

= |tems discussed:

o Problems with connecting cloud Hadoop, local Hadoop with local eclipse.

Inverted Indexing

@)
o Find some problems regarding the local Hadoop installed in our QU cloud.
©)

A visit to the QU IT people to tell them about what we need for the

Hadoop server, and show them some of the faced problems in the cloud.

» Tasks completed:

Read about tokenization.

e E-mail was sent to Mr. Brain asking for the Hadoop folder and creating Amira
accounts. Farah
Nadia
» Tasks agreed for next meeting:

Task For

e Read about inverted indexing, and try to find codes for doing this Amira

e Read about some MapReduce examples that implements the indexing. Farah

o Nadia

[]

Order a useful book about MapReduce or Hadoop.

= Attendance (Students):
Amira- Farah- Nadia

F14

QATAR UNIVERSITY

Meeting no.14:
Sunday 21 .March.10 — (11:00am-12:00 pm)

= |tems discussed:
o Details in the code (tokenization and delimiters)
o The visit to CMU and the help from Mr.Suheel
o The algorithm of the inverted index

= Tasks completed:

e Read about inverted indexing, and a good code from yahoo was found Amira
¢ Read about some MapReduce examples that implements the indexing. Fara_h

 Read about tokenization. Nadia
e A useful book about MapReduce or Hadoop is bought.

» Tasks agreed for next meeting:

Task For

e Get the right directories (Hadoop-0.20.1 and eclipse from Mr. Brian from | Amira
CMU) Farah

e Work on enhancing the indexing code to meet some specifications. Nadia

= Attendance (Students):
Amira- Farah- Nadia

F15

QATAR UNIVERSITY

Meeting no.15:
Sunday 28" .March.10 — (11:00am-12:00 pm)
= |tems discussed:
o Trying to run codes on separate clusters
Searching about generating random text files.
Running the crawler on the cloud
QU cloud is not sattled yet and our project is deleted.
Discussing some topics about the meeting with Dr.Erradi.

o O O O

= Tasks completed:

Task For

e Got the right directories (Hadoop-0.20.1 and eclipse from Mr. Brian from | Amira
CMU) Farah

e Gave the directories to the IT team to be configured on the cloud Nadia

= Tasks agreed for next meeting:

Task For

e Make some design decisions about the application and its interface Amira
e Generate random text files Fara_h

e Complete the not completed tasks from the previous meeting Nadia

= Attendance (Students):
Amira- Farah- Nadia

F16

Jhé anols
QATAR UNIVERSITY
Meeting no.16:
Sunday 4™ .April.10 — (11:00am-12:00 pm)

= |tems discussed:

o Discuss the QU cloud status (problem solved and wait for Dr. Qutaiba to

contact the IT group).
o Take the data from Al-Jazira Networks.

o Discuss the indexing application with the use of search (simple) and

determining the frequency for each word in each file.
o Starting to work on the final report.

= Tasks completed:

Task For
e Ran the crawler on the cloud by making the whole project as a runnable | Amira
jar file(slow not that efficient) Farah
Nadia
» Tasks agreed for next meeting:
Task For
e Choose the final idea (path) of the application if it is going to be an Amira
analysis improvement or application based. Farah
Nadia

e Look for algorithms related to security that can be implemented in
embarrassingly parallel way and easy to get then, test them (try to talk
and discuss the idea with Dr. Ryan Riley).

e Check cloud connectivity using the ping command.

e Think of finding another data source (by data from the net).

e Start working on the final report for the senior project.

= Attendance (Students):
Amira- Farah- Nadia

F17

/hé anols

QATAR UNIVERSITY

Meeting no.17:
Sunday 18" —Thursday 22" .April.10 — (11:00am-12:00 pm)

= |tems discussed:

@)
©)

How to deal with a tokenizer, and skip the delimiters.

The structure of the output files from the map and reduce methods, hash

tables are suggested.

How to find the frequency of a token in one file.

e Find this frequency in the map method, because in the map function
each file is processed alone.

Discuss the interface of the project:

e Using web Interface.

e Let the user to choose the parameters of the MapReduce function, the
input, output paths.

Discuss the problems faced with the crawler.

A visit to the QU IT team to follow up with them about the condition of

the cloud, and to test if we can use it depending on their work.(The CMU

cloud accounts will be terminated on 20™ April, 2010).

= Tasks completed:

Task For

e Finalize our idea (path) of the project to an application based. Amira

e Fix some problems in the crawler by understanding some things about Fara_h
the staring path of search and know how to deal with it. Nadia

e Run the crawler code from the cloud, and save the output in the cloud (
the connection using the CMU cloud was slow).

e Start working on the final report for the senior project, and find out what
IS missing from the report.

F18

» Tasks agreed for next meeting:

Task For

e Apply the discussed method for the delimiters on the indexing code. Amira
e Read about hashing tables, and how to save .txt file into hashed table. Fara_h

e Find out how to get the frequency of the token in each file. Nadia
[]

Visit to the QU IT people to follow up with them about the condition of
the cloud.

= Attendance (Students):
Amira- Farah- Nadia

F19

Jhé anols
QATAR UNIVERSITY
Meeting no.18:
Sunday 25" April. 10 — (11:00am-12:00 pm)
= |tems discussed:

o Problems in the crawler

o Problem in creating the sorted list in the code.

o Other problems in the code.

= Tasks completed:

e The discussed method for the delimiters on the indexing code was Amira

applied and it worked. Farah
e Read about hashing tables, and how to save .txt file into hashed table. Nadia
e The visit to the IT was useful and the cloud finally is ready.

= Tasks agreed for next meeting:
Task For
e Work on the crawler to solve its problem Amira
e Continue working in the coding part Farah
Nadia

e Start working on the final report

= Attendance (Students):
Amira- Nadia

F20

hd aools
QATAR UNIVERSITY

Meeting no.19:
Sunday 2" .May.2010 — (11:00am-12:00 pm)

o Items discussed:

o Getting data from the united nations website instead of the crawler because

it is very slow
o Coding:

e Making the unused list in a configuration file not in the code itself.

e Comparing Strings in Java.

e The output of the map has only 2 variables, we need more..so we

would create new class , the object of this class has 2 variables
frequency and file name

= Tasks completed:

e Editing the report and completing Amira

e Looking for another source of data (buy or another crawler) Fara_h

e Working on the code .. still working and debugging Nadia

» Tasks agreed for next meeting:

Task For

e Collect data manually Amira

e Continue working on the code Farah
Nadia

= Attendance (Students):
Amira- Farah- Nadia

F21

Jna acols
QATAR UNIVERSITY
Meeting no.20:
Sunday 9" .May.2010 — (11:00am-12:20 pm)
o ltems discussed:

e The mapper is working probably

e Search on a hash tables is working

e Hash tables in the reduce is not working

e The interface options (Web application or GUI component)

» Tasks completed:

Task For
e Collecting data manually(very very slow and inefficient) Amira
e A fast B plane : make a list of about 160 URLSs to feed the crawler Fara_h
e Deeper look to the configuration for the MapReduce programs Nadia
e Parts of the code

- Mapper

- Searching in Hash Tables

- Listing files according to the frequency

» Tasks agreed for next meeting:
Task For
e Modify the crawler to get URLs from a file and run it Amira
e Complete the reduce part of the code Farah
Nadia

e Make the interface as simple as possible

= Attendance (Students):
Amira- Farah- Nadia

F22

hé asols

QATAR UNIVERSITY

Meeting no.21
Sunday 16" .May.2010 — (11:00am-12:20 pm)

o ltems discussed:
e Gathering data using generating files.

e The codes of Indexing MapReduce Algorithm, converting .txt output
to Hash tables then to .ser files, searching code and the designed

interface.

e The number of mappers and reducers tasks in the Linelndexer code.

e Discussion of the report most important points.
Tasks completed:

Task For
e The crawler was modified. But we end with a result that it is not Amira

effective. Farah
e Reduce part of the coded is completed. Nadia
e User Interface for searching is designed.

» Tasks agreed for next meeting:

Task For
e Write the code of generating files. Amira
e Generate files of total size of 0.5 TB. Farah
e Write the documentation of the Project Nadia

Attendance (Students):

Amira- Farah- Nadia

F23

hd aools
QATAR UNIVERSITY

Meeting no.22
Sunday 23" .May.2010 — (9:00am-10:00 pm)

o Items discussed:
e The unstable state of Qatar University cloud.
e Performance testing plan.
e Creating accounts on the CMU-Qatar again, so we could test our

codes.
= Tasks completed:
Task For
e Generation files code is done, and data is gathered. Amira
e Number of chapters are written in the final report Fara_h
e Reduce part of the coded is completed. Nadia
e User Interface for searching is designed.

» Tasks agreed for next meeting:

Task For

e Finalize the project documentation. Amira

e Try to test the performance after the submitting the report. Farah
Nadia

= Attendance (Students):
Amira- Farah- Nadia

F24

