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Context

• Social media platforms (e.g., Twitter) 
spread both positive and harmful 
content, including hate speech.

• Hate speech, especially during 
crises like COVID-19, surged, 
particularly targeting East Asians.

• Platforms amplify hate speech 
through echo chambers, increasing 
societal harm and risk of offline 
violence.



Context

• Research Gaps: Existing models 
focus on keyword detection without 
examining the network structure, or 
its progression over time

• Study Objective: 

• Investigate the 
linguistic/thematic patterns 
among hate speech users 

• Provides insights for proactive 
hate speech mitigation



Context

RQ1: What is the effect of hate speech on the linguistic 
and cognitive characteristics of social media users who 
post hateful content compared to those who do not? 

RQ2: To what extent do the thematic patterns and 
specificity of hate speech narratives on social media differ 
from those of non-hate speech content? 
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Theoretical Foundation
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RQ1: Linguistic and Cognitive Markers in Hate Speech

H1a
• Hate speech users show higher levels of negative emotions (anger, anxiety, sadness)
[Alorainy et al. (2018), ElSherief et al. (2018), Giner-Sorolla & Russell (2019), Haybron (2002), Mathew et al. (2018), Matsumoto et al. (2016), Sell et al. (2009)]

H1b
• Hate speech users use language related to power, risk, and death
[Elsherief et al. (2018), Goff et al. (2008), Markowitz & Slovic (2020), Paasch-Colberg et al. (2021)]

H1c
• Hate speech users employ more third-person pronouns, indicating detachment
[Elsherief et al. (2018), Faulkner & Bliuc (2018), Zannettou et al. (2020), Perdue et al. (1990), Shih et al. (2013), Matos & Miller (2023)]

H1d
• Hate speech involves more profanity
[Carter (1944), Leader et al. (2009), Bartlett et al. (2014), Bilewicz & Soral (2020), Jeshion (2013), Thurlow (2001), Anderson & Lepore (2013), Vallée (2014)]

H1e

• Hate speech is linked with moral outrage language
[Brady et al. (2021), Crockett (2017), Salerno & Peter-Hagene (2013), Grubbs et al. (2019), Young & Young (2020), Faulkner & Bliuc (2018), Solovev & 
Pröllochs (2023)]



Theoretical Foundation
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RQ2: Thematic Coherence and Complexity in Hate Speech Narratives

H2a
• Hate speech exhibits a tightly connected network of related topics
[Papcunova et al. (2023), Salmela & Von Scheve (2017), Wood et al. (2012), Van Prooijen & Van Vugt (2018) ]

H2b
• Hate speech tweets show lower coherence
[Lewandowsky et al. (2018), Miani et al. (2022), Goertzel (1994), Swami et al. (2010), Douglas et al. (2017)]

H2c
• Hate speech narratives display lower topic specificity
[Suedfeld & Tetlock (1977), Jakob et al. (2023), Faulkner & Bliuc (2018), Gregory & Piff (2021), Dhont & Hodson (2014), Hodso n & Busseri (2012)]



Methodology – Data Collection
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Hate users: Twitter users posting at least 3 
hateful tweets about anti-Asians during 
COVID-19

Non-hate users: Twitter users posting at 
least 3 tweets containing counter-hate/neutral 
content about anti-Asians during COVID-19



Methodology – Data Collection
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Non-hate users



Methodology – Data Collection
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Non-hate users



Methodology

RQ1: What is the effect of hate speech on the linguistic 
and cognitive characteristics of social media users who 
post hateful content compared to those who do not? 

RQ2: To what extent do the thematic patterns and 
specificity of hate speech narratives on social media differ 
from those of non-hate speech content? 

How? (methodology)

Propensity score 

Analysis

What? (outcome)

emotions, linguistic,  

cognitive factors → 

LIWC categories

& ML classifier

Stat. Significance?
t-test (Cohen’s d 

Cohen)



Methodology – Propensity Score Analysis 

• Concept: Estimate what each 
user’s behavior would look like with 
and without exposure to hate 
speech

• Challenge: Can’t observe both 
outcomes for the same individual

• Solution: Match users with similar 
behaviors and characteristics
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Methodology – Propensity Score Analysis 

• Approach: Mimics a Randomized Controlled Trial (RCT) 
using propensity score matching

• Treatment: posting hate content in SM

• Goal: Compare “treatment” users (hate speech users) 
with “control” (non-hate users)

• Outcome: Measures differences in linguistic and 
thematic  features between groups before posting hate
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Methodology – Propensity Score Analysis 
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Treatment group (Hate) Control group (neutral)



Methodology – Propensity Score Analysis 

• Propensity Score: probability of a user being assigned 
to a specific group (i.e., posting hate speech).

• Calculated using logistic regression, to predict if an 
observation belongs to the treatment or control group

• Predictions are based on key covariates:

• Linguistic (LIWC Features), User Activity, Network Features

• Stratified Matching: one-to-many (10 strata)
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Methodology

RQ1: What is the effect of hate speech on the linguistic 
and cognitive characteristics of social media users who 
post hateful content compared to those who do not? 

RQ2: To what extent do the thematic patterns and 
specificity of hate speech narratives on social media differ 
from those of non-hate speech content? 

How? (methodology)

Topic Analysis & 

Network Analysis

cosine similarity

Gini coefficient

What? (outcome)

interconnectedness, 

global cohesion, 

specificity

Stat. Significant?

linear mixed-effects 

models
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RTE > 1.0 indicates an 

increase in the outcome for the 

treatment compared to the 

control

Outcome: LIWC categories
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Results 
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RTE > 1.0 indicates an 

increase in the outcome for the 

treatment compared to the 

control

Outcome: moral outrage 

classifier [Brady et al. (2021)] 



Results

• H2 report results for stratum 5

• 1,095 users: 614 hate speech users and 481 control 

• 631,504 total tweets

• Repeated experiments for the 4 largest stratum

• Consistent findings
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Document-Topic Matrix Topic-Word Matrix
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Non- Hate Topics Hate-related Topics

RT people COVID amp RT China people

RT COVID coronavirus amp Hong Kong protests

Baseball RF good like Positive comments

Masks face wear ventilators US politics

Job search resume help Twitter lockdowns

Food quicker help meals Bill Gates money

Michigan reopen stay home UK bloggers

Music radio listen stayhome Food and cooking

Social distancing mental health Book promotion

Drawing art enjoy kids Education

God bless and broadband Growth and waves

Predictive analytics detect infection Follow and unfollow

Eid stay home safe Australian port

Automatically followed checked 

unfollowed CEO experiences

Weight loss method fast American hero

Tutoring supplemental reviews help Welded doors

Court suspends constitution federal Joger incident

Studied eastern philosophy hind Temperature changes

US America Texas Alabama Unemployment rate

Misidentified remains settlers swords Redirects and links
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Controversial topics
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Non- Hate Topics Hate-related Topics

RT people COVID amp RT China people

RT COVID coronavirus amp Hong Kong protests
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Food quicker help meals Bill Gates money

Michigan reopen stay home UK bloggers

Music radio listen stayhome Food and cooking

Social distancing mental health Book promotion

Drawing art enjoy kids Education

God bless and broadband Growth and waves

Predictive analytics detect infection Follow and unfollow

Eid stay home safe Australian port

Automatically followed checked 

unfollowed CEO experiences

Weight loss method fast American hero

Tutoring supplemental reviews help Welded doors

Court suspends constitution federal Joger incident

Studied eastern philosophy hind Temperature changes

US America Texas Alabama Unemployment rate
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Neutral/positive 

topics
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Entropy: nodes 

connected in random way

Clustering coefficient: 

how likely nodes are to 

be clustered together

Shortest path: average 

shortest path between 

nodes

Density: ratio of actual 

edges to total possible 

edges
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Hate- related topics are more interconnected than non-hate topics 

Entropy: nodes 

connected in random way

Clustering coefficient: 

how likely nodes are to 

be clustered together

Shortest path: average 

shortest path between 

nodes

Density: ratio of actual 

edges to total possible 

edges
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together
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within each tweet 

(H2c)
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TF-IDF Matrix
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TF-IDF Matrix

cosine similarity
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ttweet2

.

.

tweet M

tweet1 tweet2….tweetM

cosine similarity Matrix
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TF-IDF Matrix

tweet1

ttweet2

.

.

tweet M

tweet1 tweet2….tweetM

cosine similarity Matrix

linear mixed-effects model to test for significance:

Cousin similarity ~ tweet_type + word_count + (1 | user_id])

Beta = 0.001, SE < 0.0001, t-value = 
39.06, p-value < 0.001, R2m/c = 
0.05/0.26 

cosine similarity
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Global cohesion: 

compare tweets 

together

Local cohesion: 

within each tweet 

(H2c)

Hate- related topics show high global coherence than non-hate topics 
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Topic distribution Matrix
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Gini Coefficient

[0.7, 0.1, 0.05,..0.03] >> unequal distribution>> high Gini 
coefficient

[0.1, 0.1, 0.05,..0.13] >> equal distribution>> low Gini 
coefficient
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t1     t2 …. ……    t20

Topic distribution Matrix

tweet1

tweet2

.

.

tweetM

Gini Coefficient

linear mixed-effects model to test for significance:

Gini coefficient ~ tweet_type + word_count + (1 | user_id])

Beta = -0.004, SE < 0.001, t-value = 
-12.33, p-value < 0.001. The R2m/c 
is 0.01/ 0.17 

[0.7, 0.1, 0.05,..0.03] >> unequal distribution>> high Gini 
coefficient

[0.1, 0.1, 0.05,..0.13] >> equal distribution>> low Gini 
coefficient
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Global cohesion: 

compare tweets 

together

Local cohesion: 

within each tweet 

(H2c)

Hate- related topics show low local coherence than non-hate topics 



What we learnt
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Linguistic 
differences

Cognitive 
differences

Narrative 
cohesion



Implications

55

Practical

Content 
moderation

Emotional 
engagement

Support for 
targeted 

users

Theoretical

Network and 
cohesion

Emotional 
content & 
diffusion

Research 
novelty



Future Work

• Broader Platform Analysis

• Longitudinal Studies

• Cross-Cultural Analysis

• Intervention Strategies
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